The first description of dermal armour in snakes

[1]  A. Herrel,et al.  Biomechanical behaviour of lizard osteoderms and skin under external loading. , 2022, The Journal of experimental biology.

[2]  P. Zach,et al.  Applicability of Large-Area Single-Photon Counting Detectors Timepix for High-Resolution and High-Contrast X-Ray Imaging of Biological Samples , 2022, IEEE Transactions on Nuclear Science.

[3]  A. Herrel,et al.  A review of the osteoderms of lizards (Reptilia: Squamata) , 2021, Biological reviews of the Cambridge Philosophical Society.

[4]  Krister T. Smith,et al.  A nearly complete skeleton of the oldest definitive erycine boid (Messel, Germany) , 2021, Geodiversitas.

[5]  D. Frynta,et al.  Determinate growth is predominant and likely ancestral in squamate reptiles , 2020, Proceedings of the Royal Society B.

[6]  M. A. Akbarsha,et al.  An insight into the skin glands, dermal scales and secretions of the caecilian amphibian Ichthyophis beddomei , 2020, Saudi journal of biological sciences.

[7]  F. Glaw,et al.  Armored with skin and bone: A combined histological and μCT‐study of the exceptional integument of the Antsingy leaf chameleon Brookesia perarmata (Angel, 1933) , 2020, Journal of morphology.

[8]  M. J. Hayes,et al.  The multiscale hierarchical structure of Heloderma suspectum osteoderms and their mechanical properties. , 2020, Acta biomaterialia.

[9]  A. Bauer,et al.  The development of cephalic armor in the tokay gecko (Squamata: Gekkonidae: Gekko gecko) , 2019, Journal of morphology.

[10]  J. Barbeito-Andrés,et al.  Micromorphology of osteoderms in Dasypodidae (Cingulata, Mammalia): Characterization and 3D‐reconstructions , 2019, Journal of morphology.

[11]  D. Frynta,et al.  Universality of indeterminate growth in lizards rejected: the micro-CT reveals contrasting timing of growth cartilage persistence in iguanas, agamas, and chameleons , 2019, Scientific Reports.

[12]  Travis J. LaDuc,et al.  The Cephalic Osteoderms of Varanus komodoensis as Revealed by High-Resolution X-ray Computed Tomography. , 2019, Anatomical record.

[13]  M. O'shea The Book of Snakes: A Life-Size Guide to Six Hundred Species from around the World , 2018 .

[14]  M. O'shea The Book of snakes , 2018 .

[15]  R. Reynolds,et al.  Boas of the World (Superfamily Booidae): A Checklist With Systematic, Taxonomic, and Conservation Assessments , 2018, Bulletin of the Museum of Comparative Zoology.

[16]  T. Stankowich,et al.  On dangerous ground: the evolution of body armour in cordyline lizards , 2018, Proceedings of the Royal Society B: Biological Sciences.

[17]  C. Broeckhoven,et al.  Proximate causes of variation in dermal armour: insights from armadillo lizards , 2018, Oikos.

[18]  U. Kodandaramaiah,et al.  Digging their own macroevolutionary grave: fossoriality as an evolutionary dead end in snakes , 2018, Journal of evolutionary biology.

[19]  B. Young,et al.  The rhinoceros among Serpents: Comparative anatomy and experimental biophysics of Calabar burrowing python (Calabaria reinhardtii) skin , 2018, Journal of morphology.

[20]  C. Broeckhoven,et al.  Sexual dimorphism in osteoderm expression and the role of male intrasexual aggression , 2017 .

[21]  Chris Broeckhoven,et al.  Functional trade-off between strength and thermal capacity of dermal armor: Insights from girdled lizards. , 2017, Journal of the mechanical behavior of biomedical materials.

[22]  A. Bauer,et al.  Comparative skull anatomy of terrestrial and crevice-dwelling Trachylepis skinks (Squamata: Scincidae) with a survey of resources in scincid cranial osteology , 2017, PloS one.

[23]  M. Bertelsen,et al.  Morphology of the snake spectacle reflects its evolutionary adaptation and development , 2017, BMC Veterinary Research.

[24]  C. Broeckhoven,et al.  Beauty is more than skin deep: a non‐invasive protocol for in vivo anatomical study using micro‐CT , 2017 .

[25]  D. Frynta,et al.  Patterns of growth in monitor lizards (Varanidae) as revealed by computed tomography of femoral growth plates , 2017, Zoomorphology.

[26]  A. Bauer,et al.  Sheddable armour: identification of osteoderms in the integument of Geckolepis maculata (Gekkota) , 2017 .

[27]  K. Beard,et al.  Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status , 2016 .

[28]  D. Frynta,et al.  Antipredatory reaction of the leopard gecko Eublepharis macularius to snake predators , 2016, Current zoology.

[29]  S. Gorb,et al.  Scratch resistance of the ventral skin surface in four snake species (Squamata, Serpentes). , 2016, Zoology.

[30]  M. Bates,et al.  A review of Cordylus machadoi (Squamata: Cordylidae) in southwestern Angola, with the description of a new species from the Pro-Namib desert. , 2016, Zootaxa.

[31]  R. Elsey,et al.  Alligator osteoderms as a source of labile calcium for eggshell formation , 2015 .

[32]  M. Vickaryous,et al.  Armored geckos: A histological investigation of osteoderm development in Tarentola (Phyllodactylidae) and Gekko (Gekkonidae) with comments on their regeneration and inferred function , 2015, Journal of morphology.

[33]  M. Vickaryous,et al.  Armored geckos: A histological investigation of osteoderm development in Tarentola (Phyllodactylidae) and Gekko (Gekkonidae) with comments on their regeneration and inferred function , 2015, Journal of morphology.

[34]  Z. Gasparini,et al.  HISTOLOGY OF DERMAL OSSIFICATIONS IN AN ANKYLOSAURIAN DINOSAUR FROM THE LATE CRETACEOUS OF ANTARCTICA , 2015 .

[35]  Harvey B. Lillywhite,et al.  How Snakes Work: Structure, Function and Behavior of the World's Snakes , 2014 .

[36]  L. Revell,et al.  Toward a Tree-of-Life for the boas and pythons: multilocus species-level phylogeny with unprecedented taxon sampling. , 2014, Molecular phylogenetics and evolution.

[37]  Po-Yu Chen,et al.  Structural design and mechanical behavior of alligator (Alligator mississippiensis) osteoderms. , 2013, Acta biomaterialia.

[38]  R. A. Pyron,et al.  A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes , 2013, BMC Evolutionary Biology.

[39]  V. Buffrénil,et al.  Microstructure and Mineralization of Vertebrate Skeletal Tissues , 2013 .

[40]  Jennifer C. Olori,et al.  Comparative Skull Morphology of Uropeltid Snakes (Alethinophidia: Uropeltidae) with Special Reference to Disarticulated Elements and Variation , 2012, PloS one.

[41]  M. Buchwitz,et al.  Peculiar Carapace Structure of a Triassic Chroniosuchian Implies Evolutionary Shift in Trunk Flexibility , 2010 .

[42]  Juliana G. Roscito,et al.  Comparative cranial osteology of fossorial lizards from the tribe gymnophthalmini (Squamata, Gymnophthalmidae) , 2010, Journal of morphology.

[43]  G. Tattersall,et al.  Internal vascularity of the dermal plates of Stegosaurus (Ornithischia, Thyreophora) , 2010 .

[44]  Stanislav N. Gorb,et al.  Material properties of the skin of the Kenyan sand boa Gongylophis colubrinus (Squamata, Boidae) , 2010, Journal of Comparative Physiology A.

[45]  M. Vickaryous,et al.  Calcified Integumentary Structures in Anurans , 2010 .

[46]  M. Moazen,et al.  The Relationship Between Cephalic Scales and Bones in Lizards: A Preliminary Microtomographic Survey on Three Lacertid Species , 2010, Anatomical record.

[47]  M. Vickaryous,et al.  The integumentary skeleton of tetrapods: origin, evolution, and development , 2009, Journal of anatomy.

[48]  B. Hall,et al.  Development of the dermal skeleton in Alligator mississippiensis (Archosauria, Crocodylia) with comments on the homology of osteoderms , 2008, Journal of morphology.

[49]  W. Böhme,et al.  A plywood structure in the shell of fossil and living soft-shelled turtles (Trionychidae) and its evolutionary implications , 2007 .

[50]  D. Dilkes,et al.  Biomechanics of the vertebrae and associated osteoderms of the Early Permian amphibian Cacops aspidephorus , 2007 .

[51]  Hans Friedrich Gadow,et al.  Amphibia and Reptiles , 2007 .

[52]  R. Hill,et al.  Comparative anatomy and histology of xenarthran osteoderms , 2006, Journal of morphology.

[53]  B. Hall,et al.  Osteoderm morphology and development in the nine‐banded armadillo, Dasypus novemcinctus (Mammalia, Xenarthra, Cingulata) , 2006, Journal of morphology.

[54]  J. Maisano,et al.  The ossified braincase and cephalic osteoderms of Shinisaurus crocodilurus (Squamata, Shinisauridae) , 2005 .

[55]  R. Hill,et al.  Integration of morphological data sets for phylogenetic analysis of Amniota: the importance of integumentary characters and increased taxonomic sampling. , 2005, Systematic biology.

[56]  R. Main,et al.  The evolution and function of thyreophoran dinosaur scutes: implications for plate function in stegosaurs , 2005, Paleobiology.

[57]  V. Buffrénil,et al.  VERMIFORM BONES AND THE EVOLUTION OF GIGANTISM IN MEGALANIA—HOW A REPTILIAN FOX BECAME A LION , 2003 .

[58]  E. V. Dias,et al.  On the squamation of Australerpeton cosgriffi Barberena, a temnospondyl amphibian from the Upper Permian of Brazil , 2002 .

[59]  J. Losos,et al.  The effect of body armature on escape behaviour in cordylid lizards , 2002, Animal Behaviour.

[60]  F. P. Faria,et al.  Mineralized dermal layer of the Brazilian tree‐frog Corythomantis greeningi , 2001, Journal of morphology.

[61]  H. Greene,et al.  Gape size and evolution of diet in snakes: feeding ecology of erycine boas , 1999 .

[62]  V. Reynoso A “beaded” sphenodontian (Diapsida: Lepidosauria) from the Early Cretaceous of central Mexico , 1997 .

[63]  A. Kluge Calabaria and the phylogeny of erycine snakes , 1993 .

[64]  C. Jared,et al.  The calcified dermal layer in anurans , 1993 .

[65]  Richard Shine,et al.  Patterns of Survival, Growth, and Maturation in Snakes and Lizards , 1992, The American Naturalist.

[66]  M. Wake,et al.  Structure of the scales of Dermophis and Microcaecilia (Amphibia: Gymnophiona), and a comparison to dermal ossifications of other vertebrates , 1990, Journal of morphology.

[67]  A. Queiroz,et al.  The ecological cost of morphological specialization: feeding by a fossorial lizard , 1987, Oecologia.

[68]  Z. Szyndlar Snakes from the lower Miocene locality of Dolnice (Czechoslovakia) , 1987 .

[69]  J. Castanet,et al.  New data on the structure and the growth of the osteoderms in the reptile Anguis fragilis L. (Anguidae, Squamata) , 1985, Journal of morphology.

[70]  R. Ruibal,et al.  Osteoderms in Anurans , 1984 .

[71]  H. J. Gamble Basic Structure and Evolution of Vertebrates. , 1981 .

[72]  J. Castanet,et al.  Structure of the dermal scales in gymnophiona (Amphibia) , 1980, Journal of morphology.

[73]  H. Greene Defensive Tail Display by Snakes and Amphisbaenians , 1973 .

[74]  H. H. Verdenius,et al.  A QUANTITATIVE STUDY OF DECALCIFICATION METHODS IN HISTOLOGY , 1958, Journal of clinical pathology.

[75]  Mahdi Rajabizadeh,et al.  Revised classification of the genus Eryx Daudin, 1803 (Serpentes: Erycidae) in Iran and neighbouring areas, based on mtDNA sequences and morphological data , 2020 .

[76]  C. Broeckhoven,et al.  X-ray microtomography in herpetological research: a review , 2018 .

[77]  J. Wiens,et al.  Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. , 2016, Molecular phylogenetics and evolution.

[78]  B. Hall Bones and cartilage : developmental and evolutionary skeletal biology , 2015 .

[79]  A. Herrel,et al.  Push and bite: trade-offs between burrowing and biting in a burrowing skink (Acontias percivali) , 2011 .

[80]  B. C. Mahendra,et al.  THE CAUDAL VERTEBR / E OF ERYX JOHNII ( RUSSELL ) , 2009 .

[81]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[82]  H. Schleich,et al.  Two species of the genus Eryx (Serpentes; Boidae; Erycinae) from the Spanish Neogene with comments on the past distribution of the genus in Europe , 1994 .

[83]  C. Gans Studies on amphisbaenids (Amphisbaenia, Reptilia). 1, A taxonomic revision of the Trogonophinae, and a functional interpretation of the amphisbaenid adaptive pattern. Bulletin of the AMNH ; v. 119, article 3 , 1960 .