Output Feedback Stabilization of Linear Systems With Actuator Saturation

The note presents a method for designing an output feedback law that stabilizes a linear system subject to actuator saturation with a large domain of attraction. This method applies to general linear systems including strictly unstable ones. A nonlinear output feedback controller is first expressed in the form of a quasi-LPV system. Conditions under which the closed-loop system is locally asymptotically stable are then established in terms of the coefficient matrices of the controller. The design of the controller (coefficient matrices) that maximizes an estimate of the domain of attraction is then formulated and solved as an optimization problem with LMI constraints

[1]  Kevin Warwick,et al.  Mean-tracking clustering algorithm for radial basis function centre selection , 1997 .

[2]  J. M. Gomes da Silva,et al.  TIME-VARYING DYNAMIC CONTROLLERS FOR DISCRETE-TIME LINEAR SYSTEMS WITH INPUT SATURATION , 2005 .

[3]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[4]  Dennis S. Bernstein,et al.  Dynamic output feedback compensation for linear systems with independent amplitude and rate saturations , 1997 .

[5]  Marimuthu Palaniswami,et al.  Effects of moving the centers in an RBF network , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[6]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[7]  Sheng Chen,et al.  Practical identification of NARMAX models using radial basis functions , 1990 .

[8]  George W. Irwin,et al.  A hybrid linear/nonlinear training algorithm for feedforward neural networks , 1998, IEEE Trans. Neural Networks.

[9]  George W. Irwin,et al.  A fast nonlinear model identification method , 2005, IEEE Transactions on Automatic Control.

[10]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[11]  Zongli Lin,et al.  Semi-global Exponential Stabilization of Linear Systems Subject to \input Saturation" via Linear Feedbacks , 1993 .

[12]  Stephen P. Boyd,et al.  Analysis of linear systems with saturation using convex optimization , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[13]  Sophie Tarbouriech,et al.  Local stabilization of discrete-time linear systems with saturating controls: an LMI-based approach , 2001, IEEE Trans. Autom. Control..

[14]  Kang Li,et al.  A two-stage algorithm for identification of nonlinear dynamic systems , 2006, Autom..

[15]  S. Billings,et al.  Fast orthogonal identification of nonlinear stochastic models and radial basis function neural networks , 1996 .

[16]  Michael Vogt Combination of radial basis function neural networks with optimized learning vector quantization , 1993, IEEE International Conference on Neural Networks.

[17]  Ali Saberi,et al.  Semi-global exponential stabilization of linear discrete-time systems subject to input saturation via linear feedbacks , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[18]  Tetsuya Iwasaki,et al.  On the use of multi-loop circle criterion for saturating control synthesis , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[19]  A. Teel Global stabilization and restricted tracking for multiple integrators with bounded controls , 1992 .

[20]  Nicolaos B. Karayiannis,et al.  Reformulated radial basis neural networks trained by gradient descent , 1999, IEEE Trans. Neural Networks.

[21]  Tingshu Hu,et al.  On semi-global stabilizability of anti-stable systems by saturated linear feedback , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[22]  Sheng Chen,et al.  Robust nonlinear model identification methods using forward regression , 2003, IEEE Trans. Syst. Man Cybern. Part A.

[23]  Tingshu Hu,et al.  On semiglobal stabilizability of antistable systems by saturated linear feedback , 2002, IEEE Trans. Autom. Control..

[24]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[25]  A. Packard,et al.  Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback , 1994 .

[26]  Kazushi Nakano,et al.  RBF-ARX model based nonlinear system modeling and predictive control with application to a NOx decomposition process , 2004 .

[27]  Tingshu Hu,et al.  An analysis and design method for linear systems subject to actuator saturation and disturbance , 2002, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[28]  Sophie Tarbouriech,et al.  Output feedback robust stabilization of uncertain linear systems with saturating controls: an LMI approach , 1999, IEEE Trans. Autom. Control..

[29]  Stephen A. Billings,et al.  International Journal of Control , 2004 .

[30]  R. Suárez,et al.  Linear systems with bounded inputs : global stabilization with eigenvalue placement , 1997 .

[31]  Tingshu Hu,et al.  Control Systems with Actuator Saturation: Analysis and Design , 2001 .

[32]  Tingshu Hu,et al.  Control Systems with Actuator Saturation: Analysis and Design , 2001 .

[33]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[34]  H. Akaike A new look at the statistical model identification , 1974 .

[35]  Tetsuya Iwasaki,et al.  On the use of multi-loop circle criterion for saturating control synthesis , 2000 .

[36]  Hak-Keung Lam,et al.  Tuning of the structure and parameters of a neural network using an improved genetic algorithm , 2003, IEEE Trans. Neural Networks.

[37]  Faryar Jabbari,et al.  Output feedback controllers for disturbance attenuation with actuator amplitude and rate saturation , 2000, Autom..

[38]  Héctor Pomares,et al.  Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation , 2003, IEEE Trans. Neural Networks.

[39]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[40]  Eduardo Sontag,et al.  A general result on the stabilization of linear systems using bounded controls , 1994, IEEE Trans. Autom. Control..

[41]  L. Piroddi,et al.  An identification algorithm for polynomial NARX models based on simulation error minimization , 2003 .

[42]  Zongli Lin,et al.  Output feedback stabilization of linear systems with actuator saturation , 2005, Proceedings of the 2005, American Control Conference, 2005..

[43]  Fen Wu,et al.  Induced L2‐norm control for LPV systems with bounded parameter variation rates , 1996 .

[44]  Robert M. Sanner,et al.  Gaussian Networks for Direct Adaptive Control , 1991, 1991 American Control Conference.

[45]  Sophie Tarbouriech,et al.  Stability regions for linear systems with saturating controls via circle and Popov criteria , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.