Ensemble Kalman methods with constraints

Ensemble Kalman methods constitute an increasingly important tool in both state and parameter estimation problems. Their popularity stems from the derivative-free nature of the methodology which may be readily applied when computer code is available for the underlying state-space dynamics (for state estimation) or for the parameter-to-observable map (for parameter estimation). There are many applications in which it is desirable to enforce prior information in the form of equality or inequality constraints on the state or parameter. This paper establishes a general framework for doing so, describing a widely applicable methodology, a theory which justifies the methodology, and a set of numerical experiments exemplifying it.

[1]  Andrew M. Stuart,et al.  Analysis of the Ensemble Kalman Filter for Inverse Problems , 2016, SIAM J. Numer. Anal..

[2]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[3]  J. Burke,et al.  Optimization viewpoint on Kalman smoothing, with applications to robust and sparse estimation , 2013, 1303.1993.

[4]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[5]  Ghulam Rasool,et al.  Constrained State Estimation - A Review , 2018, 1807.03463.

[6]  P. Vachhani,et al.  Robust and reliable estimation via Unscented Recursive Nonlinear Dynamic Data Reconciliation , 2006 .

[7]  Colin J. Cotter,et al.  Probabilistic Forecasting and Bayesian Data Assimilation , 2015 .

[8]  D. Simon,et al.  Kalman filtering with inequality constraints for turbofan engine health estimation , 2006 .

[9]  Leonardo A. B. Tôrres,et al.  On unscented Kalman filtering with state interval constraints , 2010 .

[10]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[11]  A. Stuart,et al.  Data Assimilation: A Mathematical Introduction , 2015, 1506.07825.

[12]  S.L. Shah,et al.  Constrained state estimation using the ensemble Kalman filter , 2008, 2008 American Control Conference.

[13]  Biao Huang,et al.  Constrained Extended Kalman Filter based on Kullback-Leibler (KL) Divergence* , 2018, 2018 European Control Conference (ECC).

[14]  Raghunathan Rengaswamy,et al.  Constrained unscented recursive estimator for nonlinear dynamic systems , 2012 .

[15]  R Dumas,et al.  A constrained extended Kalman filter for the optimal estimate of kinematics and kinetics of a sagittal symmetric exercise. , 2017, Journal of biomechanics.

[16]  A. Stuart,et al.  Ensemble Kalman methods for inverse problems , 2012, 1209.2736.

[17]  Sirish L. Shah,et al.  Constrained Nonlinear State Estimation Using Ensemble Kalman Filters , 2010 .

[18]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[19]  Raghunathan Rengaswamy,et al.  Recursive estimation in constrained nonlinear dynamical systems , 2005 .

[20]  M. Perrier,et al.  Cell energy metabolism : a constrained ensemble Kalman filter , 2011 .

[21]  Lennart Ljung,et al.  Generalized Kalman smoothing: Modeling and algorithms , 2016, Autom..

[22]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[23]  D. Asimaki,et al.  A Generic Velocity Profile for Basin Sediments in California Conditioned on VS30 , 2018 .

[24]  V. Prasad,et al.  Inequality constrained parameter estimation using filtering approaches , 2014 .

[25]  Martin Verlaan,et al.  Conservation of Mass and Preservation of Positivity with Ensemble-Type Kalman Filter Algorithms , 2014 .

[26]  Lena Mamykina,et al.  Personalized glucose forecasting for type 2 diabetes using data assimilation , 2017, PLoS Comput. Biol..

[27]  D. Simon Kalman filtering with state constraints: a survey of linear and nonlinear algorithms , 2010 .

[28]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[29]  Dan Simon,et al.  Constrained Kalman filtering via density function truncation for turbofan engine health estimation , 2010, Int. J. Syst. Sci..

[30]  G. Evensen,et al.  Data assimilation in the geosciences: An overview of methods, issues, and perspectives , 2017, WIREs Climate Change.

[31]  Jing Lei,et al.  Dynamic inversion in electrical capacitance tomography using the ensemble Kalman filter , 2012 .

[32]  Jay H. Lee,et al.  A moving horizon‐based approach for least‐squares estimation , 1996 .

[33]  Ning Liu,et al.  Inverse Theory for Petroleum Reservoir Characterization and History Matching , 2008 .

[34]  E. Mosekilde,et al.  Computer model for mechanisms underlying ultradian oscillations of insulin and glucose. , 1991, The American journal of physiology.

[35]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..