Progress in phosphors and filters for luminescent solar concentrators.

Luminescent solar concentrators would allow for high concentration if losses by reabsorption and escape could be minimized. We introduce a phosphor with close-to-optimal luminescent properties and hardly any reabsorption. A problem for use in a luminescent concentrator is the large scattering of this material; we discuss possible solutions for this. Furthermore, the use of broad-band cholesteric filters to prevent escape of luminescent radiation from this phosphor is investigated both experimentally and using simulations. Simulations are also used to predict the ultimate performance of luminescent concentrators.

[1]  Cees W. M. Bastiaansen,et al.  Controlling Light Emission in Luminescent Solar Concentrators Through Use of Dye Molecules Aligned in a Planar Manner by Liquid Crystals , 2009 .

[2]  Joseba Zubia,et al.  Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications , 2001 .

[3]  Light Polarization by Cholesteric Layers , 2003 .

[4]  C. Ronda,et al.  Luminescence : from theory to applications , 2008 .

[5]  Yaron Paz,et al.  Application of TiO2 photocatalysis for air treatment: Patents’ overview , 2010 .

[6]  Neil Robertson,et al.  Characterization and reduction of reabsorption losses in luminescent solar concentrators. , 2010, Applied optics.

[7]  D. Boer,et al.  Optimizing wavelength-selective filters for Luminescent Solar Concentrators , 2010 .

[8]  Keith W. J. Barnham,et al.  Quantum-dot concentrator and thermodynamic model for the global redshift , 2000 .

[9]  A. Goetzberger,et al.  Solar energy conversion with fluorescent collectors , 1977 .

[10]  J. Lambe,et al.  Luminescent greenhouse collector for solar radiation. , 1976, Applied optics.

[11]  Yubao Wang,et al.  Hybrid high refractive index polymer coatings , 2005, SPIE OPTO.

[12]  Rita Mehra,et al.  Application of refractive index mixing rules in binary systems of hexadecane and heptadecane withn-alkanols at different temperatures , 2003 .

[13]  D. D. Boer Luminescent and Non-Luminescent Solar Concentrators: Challenges andd Progress , 2011 .

[14]  N. V. Svitanko,et al.  New nonlinear optical crystals: Strontium and lead tetraborates , 1995 .

[15]  Chia‐Chen Li,et al.  An efficient approach to derive hydroxyl groups on the surface of barium titanate nanoparticles to improve its chemical modification ability. , 2009, Journal of colloid and interface science.

[16]  Eli Yablonovitch,et al.  Thermodynamics of the fluorescent planar concentrator , 1980 .

[17]  Deming Zhang,et al.  Energy collection efficiency of holographic planar solar concentrators. , 2010, Applied optics.

[18]  Eli,et al.  Thermodynamics of the fluorescent planar concentrator , 2005 .

[19]  Paul P. C. Verbunt,et al.  Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors. , 2010, Applied optics.

[20]  Paul P. C. Verbunt,et al.  Polarization-independent filters for luminescent solar concentrators , 2011 .

[21]  K. Sohn,et al.  Deep Red Color Emission in an Sm2 + -Doped SrB4O7 Phosphor , 2007 .

[22]  Benedikt Bläsi,et al.  The effect of photonic structures on the light guiding efficiency of fluorescent concentrators , 2009 .

[23]  R. Reisfeld,et al.  Improved planar solar converter based on uranyl neodymium and holmium glasses , 1980, Nature.

[24]  Uwe Rau,et al.  Efficiency limits of photovoltaic fluorescent collectors , 2005 .

[25]  Roland Winston,et al.  The thermodynamic limits of light concentrators , 1990 .

[26]  Dirk J. Broer,et al.  Photo‐Induced Diffusion in Polymerizing Chiral‐Nematic Media , 1999 .

[27]  C. Bastiaansen,et al.  Surface-relief and polarization gratings for solar concentrators. , 2011, Optics express.