Mud erosion by waves: a laboratory study

Abstract The role of mud erosion under waves in governing cohesive sediment transport in estuarial and coastal waters is well known. A laboratory study was conducted in order to elucidate the mechanism by which soft muds erode under progressive waves in a flume. Two types of cohesive sediment were used, a commercial kaolinite and an estuarial mud. Beds were formed by pouring in a pre-prepared sediment-water slurry and allowing the deposit to consolidate for a period ranging from 2 to 14 days. A multi-layered hydrodynamic model, which considers the mud to be viscoelastic, has been developed and used to evaluate the bed shear stress at the oscillating mud-water interface. The viscoelastic property of the mud has been confirmed by rheological measurements, and model results on velocity, pressure and wave attenuation verified against flume data. Concentration profiles indicate a distinct evolutionary pattern resulting in a highly stratified suspension. Just above the bed, a thin layer of fluid mud is generated. Above this layer, the suspension concentration is significantly lower. This two-layered feature of the concentration profile is related to the oscillatory response of the mud and water layers, and the associated momentum exchange and mass diffusion characteristics. An expression relating the rate of erosion to the bed shear stress in excess of bed shear resistance has been developed. Generation of fluid mud during erosion is a significant feature of the role of waves over mud.