Purcell Enhancement and Wavelength Shift of Emitted Light by CsPbI3 Perovskite Nanocrystals Coupled to Hyperbolic Metamaterials

Manipulation of the exciton emission rate in nanocrystals of lead halide perovskites (LHPs) was demonstrated by means of coupling of excitons with a hyperbolic metamaterial (HMM) consisting of alternating thin metal (Ag) and dielectric (LiF) layers. Such a coupling is found to induce an increase of the exciton radiative recombination rate by more than a factor of three due to the Purcell effect when the distance between the quantum emitter and HMM is nominally as small as 10 nm, which coincides well with the results of our theoretical analysis. Besides, an effect of the coupling-induced long wavelength shift of the exciton emission spectrum is detected and modeled. These results can be of interest for quantum information applications of single emitters on the basis of perovskite nanocrystals with high photon emission rates.

[1]  J. Martínez‐Pastor,et al.  Ligand-Length Modification in CsPbBr3 Perovskite Nanocrystals and Bilayers with PbS Quantum Dots for Improved Photodetection Performance , 2020, Nanomaterials.

[2]  I. Mora‐Seró,et al.  Interpretation of the photoluminescence decay kinetics in metal halide perovskite nanocrystals and thin polycrystalline films , 2020 .

[3]  Yong Zhou,et al.  Two-photon excited photoluminescence of single perovskite nanocrystals. , 2019, The Journal of chemical physics.

[4]  I. Mora‐Seró,et al.  Single-Exciton Amplified Spontaneous Emission in Thin Films of CsPbX3 (X=Br, I) Perovskite Nanocrystals. , 2019, The journal of physical chemistry letters.

[5]  A. Alkauskas,et al.  Dangling Bonds in Hexagonal Boron Nitride as Single-Photon Emitters. , 2019, Physical review letters.

[6]  V. Podolskiy,et al.  Singlet–Triplet Transition Rate Enhancement inside Hyperbolic Metamaterials , 2019, Laser & Photonics Reviews.

[7]  Zai‐Quan Xu,et al.  Purification of single-photon emission from hBN using post-processing treatments , 2019, Nanophotonics.

[8]  K. M. Morozov,et al.  Revising of the Purcell effect in periodic metal-dielectric structures: the role of absorption , 2019, Scientific Reports.

[9]  E. Sargent,et al.  Reducing Defects in Halide Perovskite Nanocrystals for Light-Emitting Applications. , 2019, The journal of physical chemistry letters.

[10]  S. H. Tavassoli,et al.  Existence Conditions of High‐k Modes in Finite Hyperbolic Metamaterials , 2019, Laser & Photonics Reviews.

[11]  Moungi G. Bawendi,et al.  Coherent single-photon emission from colloidal lead halide perovskite quantum dots , 2018, Science.

[12]  E. Barea,et al.  Controlling the Phase Segregation in Mixed Halide Perovskites through Nanocrystal Size , 2018, ACS energy letters.

[13]  Zhaowei Liu,et al.  Optimization of Nanopatterned Multilayer Hyperbolic Metamaterials for Spontaneous Light Emission Enhancement , 2018, physica status solidi (a).

[14]  Xiang Yin,et al.  Hyperbolic Metamaterial Devices for Wavefront Manipulation , 2018, Laser & Photonics Reviews.

[15]  J. Martínez‐Pastor,et al.  Trap-Limited Dynamics of Excited Carriers and Interpretation of the Photoluminescence Decay Kinetics in Metal Halide Perovskites. , 2018, The journal of physical chemistry letters.

[16]  Hiroki Takahashi,et al.  Strong Coupling of a Single Ion to an Optical Cavity. , 2018, Physical review letters.

[17]  Hua Zhou,et al.  Low‐Temperature Absorption, Photoluminescence, and Lifetime of CsPbX3 (X = Cl, Br, I) Nanocrystals , 2018 .

[18]  Steve Albrecht,et al.  How to Make over 20% Efficient Perovskite Solar Cells in Regular (n–i–p) and Inverted (p–i–n) Architectures , 2018, Chemistry of Materials.

[19]  L. Manna,et al.  Planar Double-Epsilon-Near-Zero Cavities for Spontaneous Emission and Purcell Effect Enhancement , 2018, ACS photonics.

[20]  Ning Wang,et al.  All‐Carbon‐Electrode‐Based Endurable Flexible Perovskite Solar Cells , 2018 .

[21]  C. Ballif,et al.  Complex Refractive Indices of Cesium–Formamidinium-Based Mixed-Halide Perovskites with Optical Band Gaps from 1.5 to 1.8 eV , 2018 .

[22]  Zhaowei Liu,et al.  Asymmetrically Curved Hyperbolic Metamaterial Structure with Gradient Thicknesses for Enhanced Directional Spontaneous Emission. , 2018, ACS applied materials & interfaces.

[23]  Yu-Ming Liao,et al.  Integration of Nanoscale Light Emitters and Hyperbolic Metamaterials: An Efficient Platform for the Enhancement of Random Laser Action , 2017 .

[24]  Maksym V. Kovalenko,et al.  Properties and potential optoelectronic applications of lead halide perovskite nanocrystals , 2017, Science.

[25]  J. Martínez‐Pastor,et al.  Delayed Luminescence in Lead Halide Perovskite Nanocrystals , 2017 .

[26]  Xiaodong Yang,et al.  Enhanced Quantum Dot Spontaneous Emission with Multilayer Metamaterial Nanostructures , 2017 .

[27]  H. Zeng,et al.  All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications. , 2017, Small.

[28]  S. J. Kim,et al.  Hyperbolic Dispersion Dominant Regime Identified through Spontaneous Emission Variations near Metamaterial Interfaces , 2017, 1701.05723.

[29]  Xi Yuan,et al.  Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films , 2016 .

[30]  Tian Jiang,et al.  Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots. , 2016, Optics letters.

[31]  Chun Jiang,et al.  Quantum interference in a single anisotropic quantum dot near hyperbolic metamaterials. , 2016, Optics express.

[32]  Chunfeng Zhang,et al.  Superior Optical Properties of Perovskite Nanocrystals as Single Photon Emitters. , 2015, ACS nano.

[33]  Haizheng Zhong,et al.  Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. , 2015, ACS nano.

[34]  Zhaowei Liu,et al.  Hyperbolic metamaterials and their applications , 2015 .

[35]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[36]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[37]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[38]  A. Kildishev,et al.  Enhancement of single‑photon emission from nitrogen‑vacancy centers with TiN/(Al,Sc)N hyperbolic metamaterial , 2015 .

[39]  K. V. Sreekanth,et al.  Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials , 2014, Scientific Reports.

[40]  Dominic Lepage,et al.  Enhanced spontaneous emission inside hyperbolic metamaterials. , 2014, Optics express.

[41]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[42]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[43]  E. Narimanov,et al.  Hyperbolic metamaterials , 2013, 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[44]  A. Kildishev,et al.  Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials , 2013, CLEO: 2013.

[45]  A. Kelley Condensed‐Phase Molecular Spectroscopy and Photophysics , 2012 .

[46]  Z. Jacob,et al.  Quantum nanophotonics using hyperbolic metamaterials , 2012, 1204.5529.

[47]  Mikhail A. Noginov,et al.  Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial , 2011 .

[48]  Z. Jacob,et al.  Topological Transitions in Metamaterials , 2011, Science.

[49]  Xiang Zhang,et al.  Metamaterials: a new frontier of science and technology. , 2011, Chemical Society reviews.

[50]  E. E. Narimanov,et al.  Engineering photonic density of states using metamaterials , 2010, 1005.5172.

[51]  E. Narimanov,et al.  Bulk photonic metamaterial with hyperbolic dispersion , 2008, 0809.1028.

[52]  B. Wood Structure and properties of electromagnetic metamaterials , 2007 .

[53]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[54]  M. Atatüre,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2006, Nature.

[55]  B. Hecht,et al.  Principles of Nano-Optics: Theoretical foundations , 2006 .

[56]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[57]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[58]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[59]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[60]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[61]  Leung,et al.  Frequency shifts of molecules at rough metal surfaces. , 1991, Physical review. B, Condensed matter.

[62]  Hans Kuhn,et al.  Classical Aspects of Energy Transfer in Molecular Systems , 1970 .

[63]  V. Shalaev Optical negative-index metamaterials , 2007 .

[64]  K. Vahala Optical microcavities , 2003, Nature.