Classical and Quantum Polynomial Reconstruction via Legendre Symbol Evaluation

We consider the problem of recovering a hidden monic polynomial f(X) of degree d ≥ 1 over a finite field Fp of p elements given a black box which, for any x ∈ Fp, evaluates the quadratic character of f(x). We design a classical algorithm of complexity O(d 2 p d+e ) and also show that the quantum query complexity of this problem is O(d). Some of our results extend those of Wim van Dam, Sean Hallgren and Lawrence Ip obtained in the case of a linear polynomial f(X) = X +s (with unknown s); some are new even in this case.

[1]  Wim van Dam,et al.  Quantum Algorithms for Hidden Coset ProblemsWim , 2001 .

[2]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[3]  R. Peralta On the distribution of quadratic residues and nonresidues modulo a prime number , 1992 .

[4]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[5]  Sean Hallgren,et al.  Efficient Quantum Algorithms for Shifted Quadratic Character Problems , 2000, ArXiv.

[6]  Dorian Goldfeld,et al.  Zeta functions, one-way functions, and pseudorandom number generators , 1997 .

[7]  Dima Grigoriev,et al.  Testing Shift-Equivalence of Polynomials by Deterministic, Probabilistic and Quantum Machines , 1997, Theor. Comput. Sci..

[8]  James A. Anderson,et al.  Number Theory with Applications , 1996 .

[9]  Ivan Damgård,et al.  On the Randomness of Legendre and Jacobi Sequences , 1990, CRYPTO.

[10]  Christian Mauduit,et al.  Finite and infinite pseudorandom binary words , 2002, Theor. Comput. Sci..

[11]  Rudolf Lide,et al.  Finite fields , 1983 .

[12]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[13]  Peter W. Shor,et al.  Quantum Information Theory: Results and Open Problems , 2000 .

[14]  András Sárközy,et al.  On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol , 1997 .

[15]  P. Deligne,et al.  La Conjecture de Weil. II , 1980 .

[16]  Lawrence Ip Solving Shift Problems and Hidden Coset Problem Using the Fourier Transform , 2002 .

[17]  Jeffrey Hoffstein,et al.  The Distribution of the Quadratic Symbol in Function Fields and a Faster Mathematical Stream Cipher , 2001 .

[18]  Cunsheng Ding Pattern Distributions of Legendre Sequences , 1998, IEEE Trans. Inf. Theory.

[19]  P. Deligne La conjecture de Weil. I , 1974 .

[20]  Richard J. Lipton,et al.  Algorithms for Black-Box Fields and their Application to Cryptography (Extended Abstract) , 1996, CRYPTO.

[21]  H. Koch,et al.  Basic Number Theory , 1997 .

[22]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[23]  Wim van Dam,et al.  Quantum Algorithms for Weighing Matrices and Quadratic Residues , 2000, Algorithmica.

[24]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .