Model-Free Feature Screening for Ultrahigh

[1]  R. Tibshirani,et al.  Penalized classification using Fisher's linear discriminant , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[2]  H. Zou,et al.  A direct approach to sparse discriminant analysis in ultra-high dimensions , 2012 .

[3]  J. Horowitz,et al.  Asymptotic properties of bridge estimators in sparse high-dimensional regression models , 2008, 0804.0693.

[4]  S. Geer,et al.  High-dimensional additive modeling , 2008, 0806.4115.

[5]  Jianqing Fan,et al.  High Dimensional Classification Using Features Annealed Independence Rules. , 2007, Annals of statistics.

[6]  Runze Li,et al.  Feature Screening via Distance Correlation Learning , 2012, Journal of the American Statistical Association.

[7]  W. Fung,et al.  High Breakdown Estimation for Multiple Populations with Applications to Discriminant Analysis , 2000 .

[8]  Yichao Wu,et al.  Ultrahigh Dimensional Feature Selection: Beyond The Linear Model , 2009, J. Mach. Learn. Res..

[9]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[10]  Runze Li,et al.  Model-Free Feature Screening for Ultrahigh-Dimensional Data , 2011, Journal of the American Statistical Association.

[11]  Jun Zhang,et al.  Robust rank correlation based screening , 2010, 1012.4255.

[12]  Hui Zou,et al.  The Kolmogorov filter for variable screening in high-dimensional binary classification , 2013 .

[13]  Jiashun Jin,et al.  UPS delivers optimal phase diagram in high-dimensional variable selection , 2010, 1010.5028.

[14]  Lan Wang,et al.  Quantile-adaptive model-free variable screening for high-dimensional heterogeneous data , 2013, 1304.2186.

[15]  Jianqing Fan,et al.  Sure independence screening in generalized linear models with NP-dimensionality , 2009, The Annals of Statistics.

[16]  Jianqing Fan,et al.  Nonparametric Independence Screening in Sparse Ultra-High-Dimensional Varying Coefficient Models , 2014, Journal of the American Statistical Association.

[17]  J. Friedman Regularized Discriminant Analysis , 1989 .

[18]  Hui Zou,et al.  Semiparametric Sparse Discriminant Analysis , 2013 .

[19]  Runze Li,et al.  Feature Selection for Varying Coefficient Models With Ultrahigh-Dimensional Covariates , 2014, Journal of the American Statistical Association.

[20]  Jianqing Fan,et al.  Sure independence screening for ultrahigh dimensional feature space , 2006, math/0612857.

[21]  Trevor J. Hastie,et al.  Sparse Discriminant Analysis , 2011, Technometrics.

[22]  Runze Li,et al.  On the ultrahigh dimensional linear discriminant analysis problem with a diverging number of classes , 2013 .

[23]  E. Lander,et al.  Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Hansheng Wang Forward Regression for Ultra-High Dimensional Variable Screening , 2009 .

[25]  R. Tibshirani,et al.  Diagnosis of multiple cancer types by shrunken centroids of gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  H. Zou,et al.  Sparse semiparametric discriminant analysis , 2013, J. Multivar. Anal..

[27]  D. Pollard Convergence of stochastic processes , 1984 .

[28]  Yang Feng,et al.  Nonparametric Independence Screening in Sparse Ultra-High-Dimensional Additive Models , 2009, Journal of the American Statistical Association.

[29]  S. Ramaswamy,et al.  Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. , 2002, Cancer research.