DUST EXTINCTION FROM BALMER DECREMENTS OF STAR-FORMING GALAXIES AT 0.75 ⩽ z ⩽ 1.5 WITH HUBBLE SPACE TELESCOPE/WIDE-FIELD-CAMERA 3 SPECTROSCOPY FROM THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY

Spectroscopic observations of Hα and Hβ emission lines of 128 star-forming galaxies in the redshift range 0.75 ⩽ z ⩽ 1.5 are presented. These data were taken with slitless spectroscopy using the G102 and G141 grisms of the Wide-Field-Camera 3 (WFC3) on board the Hubble Space Telescope as part of the WFC3 Infrared Spectroscopic Parallel survey. Interstellar dust extinction is measured from stacked spectra that cover the Balmer decrement (Hα/Hβ). We present dust extinction as a function of Hα luminosity (down to 3 × 1041 erg s−1), galaxy stellar mass (reaching 4 × 108 M☉), and rest-frame Hα equivalent width. The faintest galaxies are two times fainter in Hα luminosity than galaxies previously studied at z ∼ 1.5. An evolution is observed where galaxies of the same Hα luminosity have lower extinction at higher redshifts, whereas no evolution is found within our error bars with stellar mass. The lower Hα luminosity galaxies in our sample are found to be consistent with no dust extinction. We find an anti-correlation of the [O iii] λ5007/Hα flux ratio as a function of luminosity where galaxies with LHα < 5 × 1041 erg s−1 are brighter in [O iii] λ5007 than Hα. This trend is evident even after extinction correction, suggesting that the increased [O iii] λ5007/Hα ratio in low-luminosity galaxies is likely due to lower metallicity and/or higher ionization parameters.

[1]  J. Fynbo,et al.  A POPULATION OF MASSIVE, LUMINOUS GALAXIES HOSTING HEAVILY DUST-OBSCURED GAMMA-RAY BURSTS: IMPLICATIONS FOR THE USE OF GRBs AS TRACERS OF COSMIC STAR FORMATION , 2013, 1301.5903.

[2]  C. Steidel,et al.  THE CHARACTERISTIC STAR FORMATION HISTORIES OF GALAXIES AT REDSHIFTS z ∼ 2–7 , 2012, 1205.0555.

[3]  I. Craig,et al.  INFLOW RECONNECTION SOLUTIONS IN INCOMPRESSIBLE VISCO-RESISTIVE PLASMAS , 2012 .

[4]  C. Conselice,et al.  CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM z = 8 TO 4 , 2011, 1110.3785.

[5]  M. Franx,et al.  UV-CONTINUUM SLOPES AT z  ∼  4–7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR–MAGNITUDE RELATIONSHIP FOR z ⩾ 4 STAR-FORMING GALAXIES , 2011, 1109.0994.

[6]  McGill,et al.  Star formation at z=1.47 from HiZELS: an Hα+[O ii] double-blind study* , 2011, 1109.1830.

[7]  P. McCarthy,et al.  VERY STRONG EMISSION-LINE GALAXIES IN THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY AND IMPLICATIONS FOR HIGH-REDSHIFT GALAXIES, , 2011, 1109.0639.

[8]  S. Wilkins,et al.  The ultraviolet properties of star-forming galaxies – I. HST WFC3 observations of very high redshift galaxies , 2011, 1106.5977.

[9]  V. Villar,et al.  UV-TO-FIR ANALYSIS OF SPITZER/IRAC SOURCES IN THE EXTENDED GROTH STRIP. II. PHOTOMETRIC REDSHIFTS, STELLAR MASSES, AND STAR FORMATION RATES , 2011, 1102.4335.

[10]  P. Best,et al.  Predicting dust extinction from the stellar mass of a galaxy , 2010, 1007.1145.

[11]  A. Henry,et al.  THE WFC3 INFRARED SPECTROSCOPIC PARALLEL (WISP) SURVEY , 2010, 1005.4068.

[12]  C. Steidel,et al.  DUST OBSCURATION AND METALLICITY AT HIGH REDSHIFT: NEW INFERENCES FROM UV, Hα, AND 8 μm OBSERVATIONS OF z ∼ 2 STAR-FORMING GALAXIES , 2010, 1002.0837.

[13]  M. Franx,et al.  UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.

[14]  D. Tucker,et al.  REST-FRAME OPTICAL SPECTRA OF THREE STRONGLY LENSED GALAXIES AT z ∼ 2 , 2009, 0906.2197.

[15]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[16]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[17]  N. Hathi,et al.  Starburst Intensity Limit of Galaxies at z ≃ 5–6 , 2007, 0709.0520.

[18]  D. Burgarella,et al.  Lyman break galaxies at z ∼ 1 and the evolution of dust attenuation in star-forming galaxies with redshift , 2007, 0706.0810.

[19]  G. Rieke,et al.  The ultraviolet properties of luminous infrared galaxies at z ~ 0.7 - Is there any evolution in their dust attenuation? , 2007, astro-ph/0703014.

[20]  T. Nagao,et al.  The Luminosity Function and Star Formation Rate between Redshifts of 0.07 and 1.47 for Narrowband Emitters in the Subaru Deep Field , 2006, astro-ph/0610846.

[21]  Dario Fadda,et al.  Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations , 2006, astro-ph/0602596.

[22]  C. Steidel,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[23]  UCOLick,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE MASS ASSEMBLY HISTORY OF FIELD GALAXIES: DETECTION OF AN EVOLVING MASS LIMIT FOR STAR FORMING GALAXIES , 2005 .

[24]  J. Moustakas,et al.  ApJ, accepted Preprint typeset using L ATEX style emulateapj v. 6/22/04 OPTICAL STAR-FORMATION RATE INDICATORS , 2006 .

[25]  R. McMahon,et al.  Near-infrared properties of i-drop galaxies in the Hubble Ultra Deep Field , 2004, astro-ph/0403585.

[26]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[27]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[28]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[29]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[30]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[31]  A. Connolly,et al.  Toward a Resolution of the Discrepancy between Different Estimators of Star Formation Rate , 2001, astro-ph/0103253.

[32]  E. Bell,et al.  A Comparison of Ultraviolet Imaging Telescope Far-Ultraviolet and Hα Star Formation Rates , 2001 .

[33]  H. Ferguson,et al.  The Stellar Populations and Evolution of Lyman Break Galaxies , 2000, astro-ph/0105087.

[34]  E. Bell,et al.  A Comparison of UIT Far-Ultraviolet and H alpha Star Formation Rates , 2000, astro-ph/0010340.

[35]  K. Gordon,et al.  Multiple Scattering in Clumpy Media. II. Galactic Environments , 1999, astro-ph/9907342.

[36]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[37]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[38]  H. Yee,et al.  Optical-Infrared Spectral Energy Distributions of z > 2 Lyman Break Galaxies , 1997, astro-ph/9712216.

[39]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[40]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[41]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[42]  Robert C. Kennicutt,et al.  The Integrated spectra of nearby galaxies: General properties and emission line spectra , 1992 .

[43]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[44]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[45]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[46]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .