Shortening Time-to-Discovery with Dynamic Software Updates for Parallel High Performance Applications

Despite using multiple concurrent processors, a typical high performance parallel application is long-running, taking hours, even days to arrive at a solution. To modify a running high performance parallel application, the programmer has to stop the computation, change the code, redeploy, and enqueue the updated version to be scheduled to run, thus wasting not only the programmer’s time, but also expensive computing resources. To address these inefficiencies, this article describes how dynamic software updates can be used to modify a parallel application on the fly, thus saving the programmer’s time and using expensive computing resources more productively. The net effect of updating parallel applications dynamically reduces their time-to-discovery metrics, the total time it takes from posing a problem to arriving at a solution. To explore the benefits of dynamic updates for high performance applications, this article takes a two-pronged approach. First, we describe our experience in building and evaluating a system for dynamically updating applications running on a parallel cluster. We then review a large body of literature describing the existing state of the art in dynamic software updates and point out how this research can be applied to high performance applications. Our experimental results indicate that dynamic software updates have the potential to become a powerful tool in reducing the time-to-discovery metrics for high performance parallel applications.

[1]  Gustavo Alonso,et al.  Controlled, systematic, and efficient code replacement for running java programs , 2008, Eurosys '08.

[2]  Muga Nishizawa,et al.  An Easy-to-Use Toolkit for Efficient Java Bytecode Translators , 2003, GPCE.

[3]  Naren Ramakrishnan,et al.  Modular implementation of adaptive decisions in stochastic simulations , 2009, SAC '09.

[4]  I. Lee,et al.  DYMOS: a dynamic modification system , 1983, SIGSOFT '83.

[5]  Bowen Alpern,et al.  Efficient implementation of Java interfaces: Invokeinterface considered harmless , 2001, OOPSLA '01.

[6]  Toby Bloom,et al.  Reconfiguration and module replacement in Argus: theory and practice , 1993, Softw. Eng. J..

[7]  Steffen Hauptmann,et al.  On-line maintenance with on-the-fly software replacement , 1996, Proceedings of International Conference on Configurable Distributed Systems.

[8]  Michael Hicks,et al.  Safe and Timely Dynamic Updates for Multi-threaded Programs , 2009, PLDI 2009.

[9]  Mark Baker,et al.  MPJ Express: Towards Thread Safe Java HPC , 2006, 2006 IEEE International Conference on Cluster Computing.

[10]  Claes Wikström,et al.  Concurrent programming in ERLANG (2nd ed.) , 1996 .

[11]  Ophir Frieder,et al.  On-the-fly program modification: systems for dynamic updating , 1993, IEEE Software.

[12]  Dong Kwan Kim,et al.  Dynamic Software Updates for Accelerating Scientific Discovery , 2009, ICCS.

[13]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[14]  Scott Nettles,et al.  Dynamic software updating , 2001, PLDI '01.

[15]  Berend Smit,et al.  Molecular Dynamics Simulations , 2002 .

[16]  Dong Kwan Kim,et al.  Flexible and Efficient In-Vivo Enhancement for Grid Applications , 2009, 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid.

[17]  Deepak Gupta,et al.  A Formal Framework for On-line Software Version Change , 1996, IEEE Trans. Software Eng..

[18]  Jeff Magee,et al.  Dynamic Configuration for Distributed Systems , 1985, IEEE Transactions on Software Engineering.

[19]  O. Gotoh An improved algorithm for matching biological sequences. , 1982, Journal of molecular biology.

[20]  Jeffrey C. Carver,et al.  Empirical study design in the area of high-performance computing (HPC) , 2005, 2005 International Symposium on Empirical Software Engineering, 2005..

[21]  Kathryn S. McKinley,et al.  Dynamic software updates: a VM-centric approach , 2009, PLDI '09.

[22]  Robert Pawel Bialek,et al.  Dynamic Updates of Existing Java Applications Ph.D. Dissertation , 2006 .

[23]  Stephen Gilmore,et al.  Dynamic ML without dynamic types , 1997 .

[24]  Joe Armstrong,et al.  Concurrent programming in ERLANG , 1993 .

[25]  John L. Klepeis,et al.  Anton, a special-purpose machine for molecular dynamics simulation , 2007, ISCA '07.

[26]  Jeffrey C. Carver,et al.  Parallel Programmer Productivity: A Case Study of Novice Parallel Programmers , 2005, ACM/IEEE SC 2005 Conference (SC'05).

[27]  Walter Binder,et al.  Advanced Java bytecode instrumentation , 2007, PPPJ.

[28]  Xuejun Chen Extending RMI to support dynamic reconfiguration of distributed systems , 2002, Proceedings 22nd International Conference on Distributed Computing Systems.

[29]  Iulian Neamtiu,et al.  Practical Dynamic Software Updating , 2008 .

[30]  William H. Sanders,et al.  On low-cost error containment and recovery methods for guarded software upgrading , 2000, Proceedings 20th IEEE International Conference on Distributed Computing Systems.

[31]  Priya Narasimhan,et al.  Exploiting the Internet Inter-ORB Protocol Interface to Provide CORBA with Fault Tolerance , 1997, COOTS.

[32]  Kathryn S. McKinley,et al.  Dynamic Software Updates for Java : A VM-Centric Approach , 2008 .

[33]  Tobias Ritzau,et al.  Dynamic Deployment of Java Applications , 2000 .

[34]  Alessandro Orso,et al.  A technique for dynamic updating of Java software , 2002, International Conference on Software Maintenance, 2002. Proceedings..

[35]  Naren Ramakrishnan,et al.  Modular, Fine-Grained Adaptation of Parallel Programs , 2009, ICCS.

[36]  B. Tidor Molecular dynamics simulations , 1997, Current Biology.

[37]  Jeffrey C. Carver,et al.  Understanding the High-Performance-Computing Community: A Software Engineer's Perspective , 2008, IEEE Software.

[38]  Yueh-Feng Lee,et al.  Java-based component framework for dynamic reconfiguration , 2005, IEE Proc. Softw..

[39]  Robert Gray,et al.  Dynamic C++ Classes - A Lightweight Mechanism to Update Code in a Running Program , 1998, USENIX Annual Technical Conference.

[40]  Dong Kwan Kim,et al.  Overcoming JVM HotSwap constraints via binary rewriting , 2008, HotSWUp '08.

[41]  Gavin M. Bierman,et al.  UpgradeJ: Incremental Typechecking for Class Upgrades , 2008, ECOOP.

[42]  Patrick Th. Eugster,et al.  Uniform proxies for Java , 2006, OOPSLA '06.

[43]  Haibo Chen,et al.  POLUS: A POwerful Live Updating System , 2007, 29th International Conference on Software Engineering (ICSE'07).

[44]  Earl T. Barr,et al.  Runtime Support for Type-Safe Dynamic Java Classes , 2000, ECOOP.

[45]  Gustavo Alonso,et al.  Dynamic AOP with PROSE , 2005, CAiSE Workshops.

[46]  Insup Lee,et al.  DYMOS: a dynamic modification system , 1983 .

[47]  By Enrique Vargas,et al.  Dynamic Reconfiguration , 2003, Series in Computer Science.

[48]  Todd D. Millstein,et al.  Statically scoped object adaptation with expanders , 2006, OOPSLA '06.