Symplectic integrators for large scale molecular dynamics simulations: A comparison of several explicit methods

We test the suitability of a variety of explicit symplectic integrators for molecular dynamics calculations on Hamiltonian systems. These integrators are extremely simple algorithms with low memory requirements, and appear to be well suited for large scale simulations. We first apply all the methods to a simple test case using the ideas of Berendsen and van Gunsteren. We then use the integrators to generate long time trajectories of a 1000 unit polyethylene chain. Calculations are also performed with two popular but nonsymplectic integrators. The most efficient integrators of the set investigated are deduced. We also discuss certain variations on the basic symplectic integration technique.

[1]  Robert D. Skeel,et al.  Explicit canonical methods for Hamiltonian systems , 1992 .

[2]  J. Meiss Symplectic maps, variational principles, and transport , 1992 .

[3]  Robert D. Skeel,et al.  Dangers of multiple time step methods , 1993 .

[4]  L. Shampine,et al.  Computer solution of ordinary differential equations : the initial value problem , 1975 .

[5]  A. Messiah Quantum Mechanics , 1961 .

[6]  R. Ruth A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.

[7]  C. W. Gear,et al.  Invariants and numerical methods for ODEs , 1992 .

[8]  J. W. Humberston Classical mechanics , 1980, Nature.

[9]  Bobby G. Sumpter,et al.  Computer experiments on the internal dynamics of crystalline polyethylene: Mechanistic details of conformational disorder , 1990 .

[10]  Kent R. Wilson,et al.  Shadowing, rare events, and rubber bands. A variational Verlet algorithm for molecular dynamics , 1992 .

[11]  Kin'ya Takahashi,et al.  Applicability of symplectic integrator to classically unstable quantum dynamics , 1993 .

[12]  C. Scovel,et al.  Symplectic integration of Hamiltonian systems , 1990 .

[13]  R. McLachlan,et al.  The accuracy of symplectic integrators , 1992 .

[14]  Michael L. Klein COMPUTER SIMULATION STUDIES OF SOLIDS , 1985 .

[15]  Mari Paz Calvo,et al.  The Development of Variable-Step Symplectic Integrators, with Application to the Two-Body Problem , 1993, SIAM J. Sci. Comput..

[16]  B. Berne,et al.  Reply to Comment on: Reversible multiple time scale molecular dynamics , 1993 .

[17]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[18]  M. Karplus,et al.  Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics , 1988 .

[19]  Bobby G. Sumpter,et al.  Molecular dynamics simulations of polymers: Methods for optimal Fortran programming , 1989 .

[20]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[21]  Wojciech Rozmus,et al.  A symplectic integration algorithm for separable Hamiltonian functions , 1990 .

[22]  William G. Hoover,et al.  Simple exact for well known molecular dynamics algorithms , 1987 .

[23]  Stephen Wolfram,et al.  Mathematica: a system for doing mathematics by computer (2nd ed.) , 1991 .

[24]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[25]  W. G. Hoover Computational Statistical Mechanics , 1991 .

[26]  William H. Press,et al.  Numerical recipes , 1990 .

[27]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .