Photoacoustic Gas Analysis Using Interferometric Cantilever Microphone

Abstract Theoretical considerations and a simple but realistic model of the function of the cantilever‐based photoacoustic trace gas system are presented. The essential features of the cantilever dynamics, thermal characteristics, and noise models are derived. Some other related constructions are shown with the practical implementations of the real system.

[1]  Yuan,et al.  Thermal noise reduction of mechanical oscillators by actively controlled external dissipative forces , 2000, Ultramicroscopy.

[2]  Alexander Graham Bell,et al.  Upon the production of sound by radiant energy , 1881, American Journal of Science.

[3]  Javier Tamayo,et al.  Study of the noise of micromechanical oscillators under quality factor enhancement via driving force control , 2005 .

[4]  M. H. de Paula,et al.  Optical microphone for photoacoustic spectroscopy , 1988 .

[5]  C. F. Schmidt,et al.  Thermal noise limitations on micromechanical experiments , 1998, European Biophysics Journal.

[6]  Jyrki Kauppinen,et al.  Selective differential photoacoustic method for trace gas analysis , 2005 .

[7]  Frank K. Tittel,et al.  Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region , 2005 .

[8]  V. Koskinen,et al.  Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection: erratum. , 2006, Optics express.

[9]  Ute Rabe,et al.  Vibrations of free and surface‐coupled atomic force microscope cantilevers: Theory and experiment , 1996 .

[10]  V. Koskinen,et al.  High sensitivity in gas analysis with photoacoustic detection , 2004 .

[11]  P. Saulson,et al.  Thermal noise in mechanical experiments. , 1990, Physical review. D, Particles and fields.

[12]  J. Garbini,et al.  Optimal control of force microscope cantilevers. II. Magnetic coupling implementation , 1996 .

[13]  Jyrki Kauppinen,et al.  Extremely sensitive trace gas analysis with modern photoacoustic spectroscopy , 2006 .

[14]  L. Kreuzer,et al.  Ultralow Gas Concentration Infrared Absorption Spectroscopy , 1971 .

[15]  L. Rosenhead Conduction of Heat in Solids , 1947, Nature.

[16]  K. Roth,et al.  Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source , 2007 .

[17]  E. McFarland,et al.  Multi-mode noise analysis of cantilevers for scanning probe microscopy , 1997 .

[18]  Jyrki Kauppinen,et al.  Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection. , 2005, Optics express.

[19]  A. Parkes,et al.  A sensitivity comparison of three photoacoustic cells containing a single microphone, a differential dual microphone or a cantilever pressure sensor , 2007 .

[20]  J. Atwood,et al.  The laser illuminated absorptivity spectrophone: a method for measurement of weak absorptivity in gases at laser wavelengths. , 1968, Applied optics.

[21]  A. Miklós,et al.  Application of acoustic resonators in photoacoustic trace gas analysis and metrology , 2001 .

[22]  Joseph L. Garbini,et al.  Optimal control of force microscope cantilevers. I. Controller design , 1996 .

[23]  R. Hernberg,et al.  Photoacoustic detection of oxygen using cantilever enhanced technique , 2006 .

[24]  Gerald J. Diebold,et al.  Interferometric microphone for optoacoustic spectroscopy , 1987 .

[25]  A. Rosencwaig,et al.  Photoacoustic spectroscopy. , 1980, Annual review of biophysics and bioengineering.

[26]  P. B. Allen Conduction of Heat. , 1983 .

[27]  A. Bell LXVIII. Upon the production of sound by radiant energy , 1881 .

[28]  Jyrki Kauppinen,et al.  Optimization of a Microphone for Photoacoustic Spectroscopy , 2003, Applied spectroscopy.

[29]  J Tyndall Action of an Intermittent Beam of Radiant Heat Upon Gaseous Matter , Nature.

[30]  Richard F. Greene,et al.  On a Theorem of Irreversible Thermodynamics , 1952 .