Low-voltage alterable EAROM cells with nitride-barrier avalanche-injection MIS (NAMIS)

Design and characteristics of NAMIS-EAROM cells alterable with voltages of about 10 V are demonstrated. The NAMIS cell employs a very thin silicon nitride film grown by direct thermal nitridation of a silicon substrate as the first insulating layer in a stacked-gate structure. Carrier injection into a floating gate is greatly enhanced due to low energy-barrier heights of silicon nitride. Further, a device structure suitable for low-voltage write/erase is presented. Writing is performed by using a single pulse of 10 V, 1 ms. Erasing is achieved by pulses of -5 and 10 V, 1 ms. Repetition of write/erase cycling is possible more than 105times. Memory retention is expected to be much longer than 10 years at 125°C. The nonvolatility in the NAMIS cell is compatible with low-voltage operation, write/erase cycling, and read capacity over conventional FAMOS-type or MNOS-type memories.

[1]  C. Neugebauer,et al.  Endurance and memory decay of MNOS devices , 1976 .

[2]  B. Rossler,et al.  Electrically erasable and reprogrammable read-only memory using the n-channel SIMOS one-transistor cell , 1977, IEEE Transactions on Electron Devices.

[3]  J. Cricchi,et al.  Automatic meter reading with MNOS memory , 1972 .

[4]  B. Roessler,et al.  Erasable and electrically reprogrammable read-only memory using the N-channel SIMOS one-transistor cell , 1975 .

[5]  D. Frohman-Bentchkowsky Memory Behavior in a Floating-Gate Avalanche-Injection MOS (famos) Structure , 1971 .

[6]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[7]  J. F. Verwey,et al.  Mean free path of hot electrons at the surface of boron‐doped silicon , 1975 .

[8]  G. Perlegos,et al.  High performance, MOS EPROMs using a stacked-gate cell , 1977, 1977 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[9]  Yukun Hsia MNOS LSI memory device data retention measurements and projections , 1977 .

[10]  James T. Kendall,et al.  Recent progress in MNOS memory technology , 1974 .

[11]  H. Card Factors affecting avalanche injection into insulating layers from a semiconductor surface , 1974 .

[12]  James R. Cricchi,et al.  Nonvolatile block-oriented RAM , 1974 .

[13]  J. Verwey,et al.  Avalanche-injected electron currents in SiO2 at high injection densities , 1974 .

[14]  G. Warfield,et al.  Carrier mobility and current saturation in the MOS transistor , 1965 .

[15]  K. Jeppson,et al.  Unintentional writing of a FAMOS memory device during reading , 1976 .

[16]  Y. Tarui,et al.  Electrically reprogrammable nonvolatile semiconductor memory , 1972 .

[17]  C. Neugebauer,et al.  Electrically erasable buried gate PROM , 1977, 1977 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[18]  C. M. Svensson,et al.  Properties of MNOS structures , 1972 .

[19]  Functional modelling of non-volatile MOS memory devices for computer-aided design , 1975 .

[20]  Takashi Ito,et al.  Thermally grown silicon nitride films for high-performance MNS devices , 1978 .

[21]  John J. Barnes,et al.  Operation and characterization of N-channel EPROM cells , 1976 .

[22]  H. Card,et al.  Reversible floating‐gate memory , 1973 .

[23]  N. Endo,et al.  A 1024-bit MNOS RAM using avalanche-tunnel injection , 1975 .

[24]  F. Masuoka,et al.  Electrically alterable avalanche-injection-type MOS READ-ONLY memory with stacked-gate structure , 1976, IEEE Transactions on Electron Devices.

[25]  A. Goodman PHOTOEMISSION OF ELECTRONS AND HOLES INTO SILICON NITRIDE , 1968 .

[26]  G. Torelli,et al.  E2-PROM TV synthesizer , 1978, 1978 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[27]  H. C. Card,et al.  Modelling of channel enhancement effects on the write characteristics of FAMOS devices , 1976 .

[28]  S. Hijiya,et al.  Very Thin Silicon Nitride Films Grown by Direct Thermal Reaction with Nitrogen , 1978 .

[29]  H. Schulte,et al.  Technology of a new n-channel one-transistor EAROM cell called SIMOS , 1977, IEEE Transactions on Electron Devices.