Convergent Bounds for Stochastic Programs with Expected Value Constraints

This article describes a bounding approximation scheme for convex multistage stochastic programs (MSP) that constrain the conditional expectation of some decision-dependent random variables. Expected value constraints of this type are useful for modelling a decision maker’s risk preferences, but they may also arise as artifacts of stage-aggregation. We develop two finite-dimensional approximate problems that provide bounds on the (infinite-dimensional) original problem, and we show that the gap between the bounds can be made smaller than any prescribed tolerance. Moreover, the solutions of the approximate MSPs give rise to a feasible policy for the original MSP, and this policy’s optimality gap is shown to be smaller than the difference of the bounds. The considered problem class comprises models with integrated chance constraints and conditional value-at-risk constraints. No relatively complete recourse is assumed.

[1]  Karl Prauendorfer,et al.  Multistage stochastic programming: Error analysis for the convex case , 1994, Math. Methods Oper. Res..

[2]  Roger J.-B. Wets,et al.  Computing Bounds for Stochastic Programming Problems by Means of a Generalized Moment Problem , 1987, Math. Oper. Res..

[3]  Peter Kall,et al.  An upper bound for SLP using first and total second moments , 1991, Ann. Oper. Res..

[4]  William T. Ziemba,et al.  Applications of Stochastic Programming , 2005 .

[5]  Suvrajeet Sen,et al.  The Scenario Generation Algorithm for Multistage Stochastic Linear Programming , 2005, Math. Oper. Res..

[6]  William T. Ziemba,et al.  Bounds for Two-Stage Stochastic Programs with Fixed Recourse , 1994, Math. Oper. Res..

[7]  J. Dupacová,et al.  Scenario reduction in stochastic programming: An approach using probability metrics , 2000 .

[8]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[9]  W. K. Haneveld Duality in Stochastic Linear and Dynamic Programming , 1986 .

[10]  Alexander Shapiro,et al.  Inference of statistical bounds for multistage stochastic programming problems , 2003, Math. Methods Oper. Res..

[11]  D. Kuhn Generalized Bounds for Convex Multistage Stochastic Programs , 2004 .

[12]  Maarten H. van der Vlerk,et al.  Integrated Chance Constraints: Reduced Forms and an Algorithm , 2006, Comput. Manag. Sci..

[13]  G. Dantzig,et al.  Large-Scale Stochastic Linear Programs: Importance Sampling and Benders Decomposition , 1991 .

[14]  Yuri M. Ermoliev,et al.  Stochastic quasigradient methods for optimization of discrete event systems , 1992, Ann. Oper. Res..

[15]  Karl Frauendorfer,et al.  Barycentric scenario trees in convex multistage stochastic programming , 1996, Math. Program..

[16]  S. E. Wright,et al.  Primal-Dual Aggregation and Disaggregation for Stochastic Linear Programs , 1994, Math. Oper. Res..

[17]  Georg Ch. Pflug,et al.  Scenario tree generation for multiperiod financial optimization by optimal discretization , 2001, Math. Program..

[18]  Werner Römisch,et al.  Scenario Reduction Algorithms in Stochastic Programming , 2003, Comput. Optim. Appl..

[19]  R. Rockafellar,et al.  Nonanticipativity and L1-martingales in stochastic optimization problems , 1976 .

[20]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[21]  John M. Wilson,et al.  Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..

[22]  Berç Rustem,et al.  Computational Methods in Financial Engineering , 2008 .

[23]  Werner Römisch,et al.  Stability of Multistage Stochastic Programs , 2006, SIAM J. Optim..

[24]  William T. Ziemba,et al.  Applications of Stochastic Programming (MPS-SIAM Series in Optimization) , 2005 .

[25]  R. Wets,et al.  Stochastic programming , 1989 .

[26]  Teemu Pennanen,et al.  Epi-convergent discretizations of multistage stochastic programs via integration quadratures , 2008, Math. Program..

[27]  Jitka Dupacová,et al.  Scenario reduction in stochastic programming , 2003, Math. Program..

[28]  R. Rockafellar,et al.  Stochastic Convex Programming: Relatively Complete Recourse and Induced Feasibility , 1976 .

[29]  Teemu Pennanen,et al.  Epi-Convergent Discretizations of Multistage Stochastic Programs , 2005, Math. Oper. Res..

[30]  András Prékopa,et al.  Contributions to the theory of stochastic programming , 1973, Math. Program..

[31]  G. Infanger,et al.  Planning under uncertainty solving large-scale stochastic linear programs , 1992 .

[32]  Stein W. Wallace,et al.  Generating Scenario Trees for Multistage Decision Problems , 2001, Manag. Sci..

[33]  R. Rockafellar,et al.  Stochastic convex programming: basic duality. , 1976 .

[34]  A. Madansky Inequalities for Stochastic Linear Programming Problems , 1960 .

[35]  Daniel Kuhn,et al.  Bound-based decision rules in multistage stochastic programming , 2008, Kybernetika.

[36]  Ronald Hochreiter,et al.  Financial scenario generation for stochastic multi-stage decision processes as facility location problems , 2007, Ann. Oper. Res..

[37]  R. Rockafellar,et al.  The Optimal Recourse Problem in Discrete Time: $L^1 $-Multipliers for Inequality Constraints , 1978 .

[38]  Svetlozar T. Rachev,et al.  Quantitative Stability in Stochastic Programming: The Method of Probability Metrics , 2002, Math. Oper. Res..

[39]  Karl Frauendorfer,et al.  Solving SLP Recourse Problems with Arbitrary Multivariate Distributions - The Dependent Case , 1988, Math. Oper. Res..

[40]  Michael A. H. Dempster,et al.  EVPI‐based importance sampling solution proceduresfor multistage stochastic linear programmeson parallel MIMD architectures , 1999, Ann. Oper. Res..

[41]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[42]  H. Wiese,et al.  J. Goodisman: “Electrochemistry: Theoretical Foundations”, John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore 1987. 374 Seiten, Preis: £ 50.45 , 1988 .

[43]  William T. Ziemba,et al.  Bounding the Expectation of a Saddle Function with Application to Stochastic Programming , 1994, Math. Oper. Res..

[44]  Matti Koivu,et al.  Variance reduction in sample approximations of stochastic programs , 2005, Math. Program..

[45]  S. Wallace,et al.  Evaluation of scenario-generation methods for stochastic programming , 2007 .

[46]  Kurt Marti Duality in stochastic linear and dynamic programming , 1987 .

[47]  J. Žáčková On minimax solutions of stochastic linear programming problems , 1966 .

[48]  W. Ziemba,et al.  A tight upper bound for the expectation of a convex function of a multivariate random variable , 1986 .

[49]  STOCHASTIC CONVEX PROGRAMMING: SINGULAR MULTIPLIERS AND EXTENDED DUALITY SINGULAR MULTIPLIERS AND DUALITY , 1976 .

[50]  Karl Frauendorfer,et al.  Stochastic Two-Stage Programming , 1992 .

[51]  Julia L. Higle,et al.  Stochastic Decomposition: An Algorithm for Two-Stage Linear Programs with Recourse , 1991, Math. Oper. Res..

[52]  Daniel Kuhn,et al.  Aggregation and discretization in multistage stochastic programming , 2008, Math. Program..

[53]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[54]  Daniel Kuhn,et al.  Threshold Accepting Approach to Improve Bound-based Approximations for Portfolio Optimization , 2008 .

[55]  Alexander Shapiro,et al.  On complexity of multistage stochastic programs , 2006, Oper. Res. Lett..