Exponential Sums, Cyclic Codes and Sequences: the Odd Characteristic Kasami Case

Let $q=p^n$ with $n=2m$ and $p$ be an odd prime. Let $0\leq k\leq n-1$ and $k\neq m$. In this paper we determine the value distribution of following exponential(character) sums \[\sum\limits_{x\in \bF_q}\zeta_p^{\Tra_1^m (\alpha x^{p^{m}+1})+\Tra_1^n(\beta x^{p^k+1})}\quad(\alpha\in \bF_{p^m},\beta\in \bF_{q})\] and \[\sum\limits_{x\in \bF_q}\zeta_p^{\Tra_1^m (\alpha x^{p^{m}+1})+\Tra_1^n(\beta x^{p^k+1}+\ga x)}\quad(\alpha\in \bF_{p^m},\beta,\ga\in \bF_{q})\] where $\Tra_1^n: \bF_q\ra \bF_p$ and $\Tra_1^m: \bF_{p^m}\ra\bF_p$ are the canonical trace mappings and $\zeta_p=e^{\frac{2\pi i}{p}}$ is a primitive $p$-th root of unity. As applications: (1). We determine the weight distribution of the cyclic codes $\cC_1$ and $\cC_2$ over $\bF_{p^t}$ with parity-check polynomials $h_2(x)h_3(x)$ and $h_1(x)h_2(x)h_3(x)$ respectively where $t$ is a divisor of $d=\gcd(m,k)$, and $h_1(x)$, $h_2(x)$ and $h_3(x)$ are the minimal polynomials of $\pi^{-1}$, $\pi^{-(p^k+1)}$ and $\pi^{-(p^m+1)}$ over $\bF_{p^t}$ respectively for a primitive element $\pi$ of $\bF_q$. (2). We determine the correlation distribution among a family of m-sequences. This paper extends the results in \cite{Zen Li}.

[1]  Lei Hu,et al.  A Class of Nonbinary Codes and Their Weight Distribution , 2008, ArXiv.

[2]  Tor Helleseth,et al.  On the correlation distribution of the Coulter-Matthews decimation , 2006, IEEE Transactions on Information Theory.

[3]  LuoJinquan,et al.  On the Weight Distributions of Two Classes of Cyclic Codes , 2008 .

[4]  R. McEliece,et al.  Euler products, cyclotomy, and coding☆ , 1972 .

[5]  Keqin Feng,et al.  Value Distributions of Exponential Sums From Perfect Nonlinear Functions and Their Applications , 2007, IEEE Transactions on Information Theory.

[6]  Lei Hu,et al.  Generalized Kasami Sequences: The Large Set , 2005, IEEE Transactions on Information Theory.

[7]  Oscar Moreno,et al.  Minimum distance bounds for cyclic codes and Deligne's theorem , 1993, IEEE Trans. Inf. Theory.

[8]  M. V. Vlugt Hasse-Davenport Curves, Gauss Sums, and Weight Distributions of Irreducible Cyclic Codes , 1995 .

[9]  Tor Helleseth,et al.  On Niho type cross-correlation functions of m-sequences , 2007, Finite Fields Their Appl..

[10]  Marcel van der Vlugt,et al.  Surfaces and the weight distribution of a family of codes , 1997, IEEE Trans. Inf. Theory.

[11]  J. Lahtonen Two remarks on a paper by Moreno and Kumar [binary Reed-Muller codes] , 1995, IEEE Trans. Inf. Theory.

[12]  R. McEliece Irreducible Cyclic Codes and Gauss Sums , 1975 .

[13]  Keqin Feng,et al.  On the Weight Distributions of Two Classes of Cyclic Codes , 2008, IEEE Transactions on Information Theory.

[14]  Robert W. Fitzgerald,et al.  Sums of Gauss sums and weights of irreducible codes , 2005, Finite Fields Their Appl..

[15]  Keqin Feng,et al.  Weight distribution of some reducible cyclic codes , 2008, Finite Fields Their Appl..

[16]  Robert S. Coulter Explicit evaluations of some Weil sums , 1998 .

[17]  Lei Hu,et al.  The large set of p-ary Kasami sequences , 2010, Int. J. Comput. Math..

[18]  Antonia W. Bluher,et al.  On xq+1+ax+b , 2004, Finite Fields Their Appl..

[19]  Cunsheng Ding,et al.  The weight distribution of a class of linear codes from perfect nonlinear functions , 2006, IEEE Transactions on Information Theory.

[20]  Rudolf Lide,et al.  Finite fields , 1983 .

[21]  R. Schoof Families of curves and weight distributions of codes , 1995, math/9504222.

[22]  Petri Rosendahl,et al.  A Generalization of Niho’s Theorem , 2006, Des. Codes Cryptogr..

[23]  T. Kasami WEIGHT DISTRIBUTION OF BOSE-CHAUDHURI-HOCQUENGHEM CODES. , 1966 .

[24]  T. Kasami WEIGHT DISTRIBUTION FORMULA FOR SOME CLASS OF CYCLIC CODES , 1966 .

[25]  Keqin Feng,et al.  Cyclic Codes and Sequences From Generalized Coulter–Matthews Function , 2008, IEEE Transactions on Information Theory.