Temporal logic

Publisher Summary Temporal logic is one of the classic branches of modal logic. It is remarkably fruitful in the issues it has raised, the results it has given rise to, and as an applied tool. This chapter focuses on the key issues related to temporal logic and examines some topics in temporal logic that are considered both in computer science and in other fields. A basic round-up of the semantic options for handling time is describes and some logics (syntax and evaluation) that can be used are explained. The expressivity of classical and modal-style logics is compared. Kamp's famous 1968 expressive completeness theorem, the temporal reasoning, tableaux, resolution, filtration- and the finite model property, and other methods are discussed. Temporal logics come in many forms and that motivations from computing or linguistic applications and philosophical, theoretical or mathematical interests have driven temporal logic research in many disparate directions. The structures supporting varying granularity of focus and the options when propositions depend on several time points are considered.

[1]  W. Hodges Elementary Predicate Logic , 1983 .

[2]  A. Prasad Sistla,et al.  Deciding Full Branching Time Logic , 1985, Inf. Control..

[3]  Amir Pnueli,et al.  The Glory of the Past , 1985, Logic of Programs.

[4]  Frank Wolter,et al.  The finite model property in tense logic , 1995, Journal of Symbolic Logic.

[5]  L. Csirmaz,et al.  Logic Colloquium '92 , 1995 .

[6]  Michael Fisher,et al.  Equality and Monodic First-Order Temporal Logic , 2002, Stud Logica.

[7]  J. van Benthem,et al.  Temporal logic , 1995 .

[8]  Hans Reichenbach,et al.  Elements of symbolic logic , 1948 .

[9]  Patrick Blackburn,et al.  Hybrid Languages and Temporal Logic , 1999, Log. J. IGPL.

[10]  Valentin B. Shehtman,et al.  Modal logics of domains on the real plane , 1983 .

[11]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[12]  Göran Sundholm,et al.  Systems of Deduction , 1983 .

[13]  Pierre Wolper,et al.  Specification and synthesis of communicating processes using an extended temporal logic: (preliminary version) , 1982, POPL '82.

[14]  John P. Burgess,et al.  Axioms for tense logic. I. "Since" and "until" , 1982, Notre Dame J. Formal Log..

[15]  Frank Wolter,et al.  Axiomatizing the monodic fragment of first-order temporal logic , 2002, Ann. Pure Appl. Log..

[16]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[17]  Saharon Shelah,et al.  On the temporal analysis of fairness , 1980, POPL '80.

[18]  Valentin Goranko,et al.  A Road Map of Interval Temporal Logics and Duration Calculi , 2004, J. Appl. Non Class. Logics.

[19]  Maarten Marx,et al.  The Mosaic Method for Temporal Logics , 2000, TABLEAUX.

[20]  Mark Reynolds,et al.  An axiomatization of PCTL* , 2005, Inf. Comput..

[21]  Maarten Marx,et al.  Conditional XPath, the first order complete XPath dialect , 2004, PODS.

[22]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic , 2002 .

[23]  M. de Rijke,et al.  Diamonds and Defaults , 1993 .

[24]  Michael Fisher,et al.  Handling Equality in Monodic Temporal Resolution , 2003, LPAR.

[25]  Barbara Paech,et al.  Gentzen-Systems for Propositional Temporal Logics , 1988, CSL.

[26]  Antony Galton,et al.  Temporal logics and their applications , 1987 .

[27]  John P. Burgess,et al.  The decision problem for linear temporal logic , 1985, Notre Dame J. Formal Log..

[28]  Amir Pnueli,et al.  Is the Interesting Part of Process Logic Uninteresting? A Translation from PL to PDL , 1984, SIAM J. Comput..

[29]  Alasdair Urquhart,et al.  Temporal Logic , 1971 .

[30]  Joseph Y. Halpern,et al.  Decision procedures and expressiveness in the temporal logic of branching time , 1982, STOC '82.

[31]  Frank Wolter,et al.  Completeness and decidability of tense logics closely related to logics above K4 , 1997, Journal of Symbolic Logic.

[32]  Mark Reynolds,et al.  Continuous Temporal Models , 2001, Australian Joint Conference on Artificial Intelligence.

[33]  Luc Segoufin,et al.  Order Independent Temporal Properties , 2004, J. Log. Comput..

[34]  James W. Garson,et al.  Quantification in Modal Logic , 1984 .

[35]  Valentin Goranko,et al.  A General Tableau Method for Propositional Interval Temporal Logics , 2003, TABLEAUX.

[36]  Dov M. Gabbay,et al.  Logic, Language, and Reasoning Essays in Honour of Dov Gabbay , 1999 .

[37]  Martín Abadi,et al.  Security analysis of cryptographically controlled access to XML documents , 2005, PODS '05.

[38]  Alexander Moshe Rabinovich,et al.  On the Decidability of Continuous Time Specification Formalisms , 1998, J. Log. Comput..

[39]  R. McKenzie,et al.  The logic of time representation , 1987 .

[40]  David Toman On completeness of multi-dimensional first-order temporal logics , 2003, 10th International Symposium on Temporal Representation and Reasoning, 2003 and Fourth International Conference on Temporal Logic. Proceedings..

[41]  John P. Burgess,et al.  Basic Tense Logic , 1984 .

[42]  Faron Moller,et al.  Logics for Concurrency , 1996, Lecture Notes in Computer Science.

[43]  Dov M. Gabbay,et al.  The Declarative Past and Imperative Future: Executable Temporal Logic for Interactive Systems , 1987, Temporal Logic in Specification.

[44]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[45]  Clare Dixon,et al.  Clausal temporal resolution , 1999, TOCL.

[46]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..

[47]  Michael Fisher,et al.  A resolution method for CTL branching-time temporal logic , 1997, Proceedings of TIME '97: 4th International Workshop on Temporal Representation and Reasoning.

[48]  Michael Fisher,et al.  Monodic temporal resolution , 2003, TOCL.

[49]  Szabolcs Mikulás Taming First-Order Logic , 1998, Log. J. IGPL.

[50]  Valentin Goranko,et al.  Propositional Interval Neighborhood Temporal Logics , 2003, J. Univers. Comput. Sci..

[51]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[52]  Saharon Shelah,et al.  Monadic theory of order and topology in ZFC , 1982, Ann. Math. Log..

[53]  A. Prior Papers On Time And Tense , 1968 .

[54]  Angelo Montanari,et al.  Extending Kamp's Theorem to Model Time Granularity , 2002, J. Log. Comput..

[55]  Ian M. Hodkinson,et al.  Monodic Packed Fragment with Equality is Decidable , 2002, Stud Logica.

[56]  Krister Segerberg,et al.  Modal logics with linear alternative relations , 2008 .

[57]  Ian M. Hodkinson,et al.  On Gabbay's Temporal Fixed Point Operator , 1995, Theor. Comput. Sci..

[58]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[59]  Nicole Schweikardt,et al.  The succinctness of first-order logic on linear orders , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[60]  Ian M. Hodkinson Complexity of monodic guarded fragments over linear and real time , 2006, Ann. Pure Appl. Log..

[61]  D. Gabbay Expressive Functional Completeness in Tense Logic (Preliminary report) , 1981 .

[62]  Andrzej Szałas,et al.  Time and Logic: A Computational Approach , 1995 .

[63]  Stefan Schwendimann,et al.  A New One-Pass Tableau Calculus for PLTL , 1998, TABLEAUX.

[64]  Giovanni Sambin,et al.  A new proof of Sahlqvist's theorem on modal definability and completeness , 1989, Journal of Symbolic Logic.

[65]  Richard E. Ladner,et al.  The Logic of Distributed Protocols , 1986, TARK.

[66]  E. Emerson,et al.  Modalities for model checking (extended abstract): branching time strikes back , 1985, ACM-SIGACT Symposium on Principles of Programming Languages.

[67]  Krister Segerberg,et al.  An essay in classical modal logic , 1971 .

[68]  Alberto Zanardo,et al.  Branching-time logic with quantification over branches: The point of view of modal logic , 1996, Journal of Symbolic Logic.

[69]  G. Venkatesh,et al.  A Decision Method for Temporal Logic Based on Resolution , 1985, FSTTCS.

[70]  H. Wansing Displaying Modal Logic , 1998 .

[71]  Holger Schlingloff Expressive completeness of temporal logic of trees , 1992, J. Appl. Non Class. Logics.

[72]  Mark Reynolds,et al.  The complexity of the temporal logic with "until" over general linear time , 2003, J. Comput. Syst. Sci..

[73]  H. Keisler,et al.  Handbook of mathematical logic , 1977 .

[74]  Hugh McGuire,et al.  Two methods for checking formulas of temporal logic , 1995 .

[75]  Alberto Zanardo Axiomatization of ‘Peircean’ branching-time logic , 1990, Stud Logica.

[76]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[77]  Yde Venema,et al.  A Modal Logic for Chopping Intervals , 1991, J. Log. Comput..

[78]  Valentin Goranko,et al.  Complete axiomatization and decidability of Alternating-time temporal logic , 2006, Theor. Comput. Sci..

[79]  Jonathan S. Ostroff,et al.  Composition and refinement of discrete real-time systems , 1999, TSEM.

[80]  R. Thomason Combinations of Tense and Modality , 2002 .

[81]  E. V. Huntington,et al.  A new set of postulates for betweenness, with proof of complete independence , 1924 .

[82]  D. Gabbay,et al.  Temporal Logic Mathematical Foundations and Computational Aspects , 1994 .

[83]  Zohar Manna,et al.  A Decision Algorithm for Full Propositional Temporal Logic , 1993, CAV.

[84]  L. Goble The Blackwell guide to philosophical logic , 2001 .

[85]  Dov M. Gabbay,et al.  Preservation of Expressive Completeness in Temporal Models , 1987, Inf. Comput..

[86]  Martín Abadi,et al.  Nonclausal Temporal Deduction , 1985, Logic of Programs.

[87]  Amihood Amir Separation in Nonlinear Time Models , 1985, Inf. Control..

[88]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[89]  Rajeev Goré,et al.  Cut-free sequent and tableau systems for propositional Diodorean modal logics , 1994, Stud Logica.

[90]  Carsten Lutz,et al.  Quantitative temporal logics: PSpace and below , 2005, 12th International Symposium on Temporal Representation and Reasoning (TIME'05).

[91]  Joseph Y. Halpern,et al.  The complexity of reasoning about knowledge and time , 1986, STOC '86.

[92]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[93]  François Laroussinie,et al.  Specification in CTL+Past for Verification in CTL , 1999, Inf. Comput..

[94]  Maarten Marx,et al.  Undecidability of Compass Logic , 1999, J. Log. Comput..

[95]  Wolfgang Thomas,et al.  Computation Tree Logic CTL* and Path Quantifiers in the Monadic Theory of the Binary Tree , 1987, ICALP.

[96]  Serge Abiteboul,et al.  Temporal Connectives versus Explicit Timestamps in Temporal Query Languages , 1995, Temporal Databases.

[97]  Howard Bowman,et al.  Specification and Prototyping of Structured Multimedia Documents using Interval Temporal Logic , 2000 .

[98]  Pierre Wolper,et al.  Synthesis of Communicating Processes from Temporal Logic Specifications , 1981, TOPL.

[99]  Mark Reynolds,et al.  A Sound and Complete Proof System for QPTL , 2002, Advances in Modal Logic.

[100]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 2002, JACM.

[101]  Marcelo Finger,et al.  IMPERATIVE HISTORY: TWO-DIMENSIONAL EXECUTABLE TEMPORAL LOGIC , 1999 .

[102]  D. Gabbay,et al.  Handbook of tableau methods , 1999 .

[103]  Henrik Sahlqvist Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .

[104]  Patricia Bouyer,et al.  On the Expressiveness of TPTL and MTL , 2005, FSTTCS.

[105]  Joseph Y. Halpern,et al.  The Complexity of Reasoning about Knowledge and Time. I. Lower Bounds , 1989, J. Comput. Syst. Sci..

[106]  Leslie Lamport,et al.  The temporal logic of actions , 1994, TOPL.

[107]  Alan Robinson,et al.  The Inverse Method , 2001, Handbook of Automated Reasoning.

[108]  Maarten Marx,et al.  Mosaics and step-by-step. Remarks on “A modal logic of relations” , 1999 .

[109]  Joseph Y. Halpern,et al.  “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.

[110]  Angelo Montanari,et al.  Branching within Time: An Expressively Complete and Elementarily Decidable Temporal Logic for Time Granularity , 2003 .

[111]  Saharon Shelah,et al.  The Decision Problem for Branching Time Logic , 1985, J. Symb. Log..

[112]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[113]  Dov M. Gabbay,et al.  Advances in Temporal Logic , 2000 .

[114]  H. Jehle,et al.  Albert Einstein: Philosopher-Scientist. , 1951 .

[115]  M. Rabin Decidability of second-order theories and automata on infinite trees. , 1969 .

[116]  Kousha Etessami,et al.  An Until Hierarchy and Other Applications of an Ehrenfeucht-Fraïssé Game for Temporal Logic , 2000, Inf. Comput..

[117]  Thomas A. Henzinger,et al.  Real-Time Logics: Complexity and Expressiveness , 1993, Inf. Comput..

[118]  Abraham Robinson,et al.  Elementary properties of ordered abelian groups , 1960 .

[119]  Ana R. Cavalli,et al.  A Decision Method for Linear Temporal Logic , 1984, CADE.

[120]  D. Gabbay,et al.  Handbook of Philosophical Logic, Volume II. Extensions of Classical Logic , 1986 .

[121]  Regimantas Pliuskevicius,et al.  Deduction-Based Decision Procedure for a Clausal Miniscoped Fragment of FTL , 2001, IJCAR.

[122]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[123]  Ben C. Moszkowski,et al.  Executing temporal logic programs , 1986, Seminar on Concurrency.

[124]  M. de Rijke,et al.  Bisimulations for Temporal Logic , 1997, J. Log. Lang. Inf..

[125]  David E. Muller,et al.  Weak alternating automata give a simple explanation of why most temporal and dynamic logics are decidable in exponential time , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[126]  Mark Reynolds,et al.  Axiomatizing U and S over Integer Time , 1994, ICTL.

[127]  Frank Wolter,et al.  On the computational complexity of decidable fragments of first-order linear temporal logics , 2003, 10th International Symposium on Temporal Representation and Reasoning, 2003 and Fourth International Conference on Temporal Logic. Proceedings..

[128]  R. A. Bull,et al.  Basic Modal Logic , 1984 .

[129]  Yde Venema,et al.  A modal logic of relations , 1999 .

[130]  Ryo Kashima,et al.  Cut-free sequent calculi for some tense logics , 1994, Stud Logica.

[131]  Frank Wolter,et al.  Properties of Tense Logics , 1996, Math. Log. Q..

[132]  A. Nakamura,et al.  On the size of refutation Kripke models for some linear modal and tense logics , 1980 .

[133]  Edmund M. Clarke,et al.  Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons , 1982, Sci. Comput. Program..

[134]  Robert Goldblatt Diodorean modality in Minkowski spacetime , 1980 .

[135]  Pierre Wolper,et al.  The tableau method for temporal logic: an overview , 1985 .

[136]  Sushil Jajodia,et al.  Time Granularities in Databases, Data Mining, and Temporal Reasoning , 2000, Springer Berlin Heidelberg.

[137]  John P. Burgess,et al.  Axioms for tense logic. II. Time periods , 1982, Notre Dame J. Formal Log..

[138]  H. Rasiowa,et al.  Logic at work : essays dedicated to the memory of Helena Rasiowa , 1999 .

[139]  Mark Reynolds,et al.  Axioms for Branching Time , 2002, J. Log. Comput..

[140]  Ian M. Hodkinson,et al.  Completeness , 2020, Mathematics of the Bond Market: A Lévy Processes Approach.

[141]  Frank Wolter,et al.  Tense Logic Without Tense Operators , 1996, Math. Log. Q..

[142]  Evert W. Beth,et al.  Semantic Entailment And Formal Derivability , 1955 .

[143]  Bruno Poizat Deux Ou Trois Choses Que je Sais de Ln , 1982, J. Symb. Log..

[144]  Valentin Goranko Temporal Logics with Reference Pointers and Computation Tree Logics , 2000, J. Appl. Non Class. Logics.

[145]  Philippe Schnoebelen,et al.  Temporal logic with forgettable past , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[146]  Amir Pnueli,et al.  The temporal logic of programs , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[147]  Bas Luttik,et al.  Split-2 bisimilarity has a finite axiomatization over CCS with Hennessy's merge , 2004, Log. Methods Comput. Sci..

[148]  Colin Stirling,et al.  Modal and temporal logics , 1993, LICS 1993.

[149]  Michael Fisher,et al.  A Resolution Method for Temporal Logic , 1991, IJCAI.

[150]  Amihood Amir Expressive Completeness Failure in Branching Time Structures , 1987, J. Comput. Syst. Sci..

[151]  Mark Reynolds,et al.  Axiomatising first-order temporal logic: Until and since over linear time , 1996, Stud Logica.

[152]  Dov M. Gabbay,et al.  An Axiomitization of the Temporal Logic with Until and Since over the Real Numbers , 1990, J. Log. Comput..

[153]  Michael Fisher,et al.  Temporal Representation and Reasoning , 2008, Handbook of Knowledge Representation.

[154]  Maarten Marx,et al.  Multi-dimensional modal logic , 1997, Applied logic series.

[155]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[156]  Joseph Y. Halpern,et al.  "Sometimes" and "not never" revisited: on branching versus linear time (preliminary report) , 1983, POPL '83.

[157]  Larry Joseph Stockmeyer,et al.  The complexity of decision problems in automata theory and logic , 1974 .

[158]  Mark Reynolds,et al.  Axiomatisation and decidability ofF andP in cyclical time , 1994, J. Philos. Log..

[159]  D. Gabbay,et al.  Temporal expressive completeness in the presence of gaps , 1993 .

[160]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[161]  Johan van Benthem,et al.  The Logic of Time , 1983 .

[162]  John P. Burgess,et al.  Logic and time , 1979, Journal of Symbolic Logic.

[163]  Yoav Shoham,et al.  A propositional modal logic of time intervals , 1991, JACM.

[164]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[165]  James Clifford,et al.  Recent Advances in Temporal Databases , 1995, Workshops in Computing.

[166]  Alberto Zanardo A complete deductive-system for since-until branching-time logic , 1991, J. Philos. Log..

[167]  Sushil Jajodia,et al.  Temporal Databases: Theory, Design, and Implementation , 1993 .

[168]  Jaakko Hintikka,et al.  Time And Modality , 1958 .

[169]  Uwe Mönnich,et al.  Aspects of Philosophical Logic , 1981 .

[170]  C. A. R. Hoare,et al.  A Calculus of Durations , 1991, Inf. Process. Lett..

[171]  D. Gabbay,et al.  Many-Dimensional Modal Logics: Theory and Applications , 2003 .

[172]  R. A. Bull,et al.  An approach to tense logic1 , 2008 .

[173]  András Simon,et al.  The k-variable property is stronger than H-dimension k , 1997, J. Philos. Log..

[174]  Boris Konev,et al.  TRP++2.0: A Temporal Resolution Prover , 2003, CADE.

[175]  John Arnold Kalman Automated Reasoning With Otter , 2001 .

[176]  Martín Abadi,et al.  Nonclausal deduction in first-order temporal logic , 1990, JACM.

[177]  Valentin Goranko,et al.  Computation tree logics and temporal logics with reference pointers , 2000 .

[178]  James F. Allen Towards a General Theory of Action and Time , 1984, Artif. Intell..

[179]  D. Gabbay An Irreflexivity Lemma with Applications to Axiomatizations of Conditions on Tense Frames , 1981 .

[180]  Ming Xu On some U,S-tense logics , 1988, J. Philos. Log..

[181]  J. Burgess Decidability for branching time , 1980 .

[182]  Kurt Gödel,et al.  A remark about the relationship between relativity theory and idealistic philosophy , 2006 .

[183]  Frank Wolter,et al.  A Counterexample in Tense Logic , 1996, Notre Dame J. Formal Log..

[184]  Edmund M. Clarke,et al.  Model Checking , 1999, Handbook of Automated Reasoning.

[185]  Pierre Wolper,et al.  Reasoning About Infinite Computations , 1994, Inf. Comput..

[186]  Yde Venema,et al.  Expressiveness and Completeness of an Interval Tense Logic , 1990, Notre Dame J. Formal Log..

[187]  Mark Reynolds,et al.  An axiomatization of full Computation Tree Logic , 2001, Journal of Symbolic Logic.

[188]  Alexander Bochman,et al.  Concerted Instant-Interval Temporal Semantics I: Temporal Ontologies , 1990, Notre Dame J. Formal Log..

[189]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic. Volume 1 , 1989 .

[190]  Frank Wolter,et al.  Decidable fragment of first-order temporal logics , 2000, Ann. Pure Appl. Log..

[191]  Mark Reynolds,et al.  An axiomatization for until and since over the reals without the IRR rule , 1992, Stud Logica.

[192]  Mark Reynolds,et al.  A Decidable Temporal Logic of Parallelism , 1997, Notre Dame J. Formal Log..

[193]  Neil Immerman,et al.  An n! lower bound on formula size , 2003, TOCL.

[194]  Yoram Hirshfeld,et al.  Logics for Real Time: Decidability and Complexity , 2004, Fundam. Informaticae.

[195]  Zohar Manna,et al.  The Temporal Logic of Reactive and Concurrent Systems , 1991, Springer New York.

[196]  Frank Wolter,et al.  On Non-local Propositional and Weak Monodic Quantified CTL , 2004, J. Log. Comput..

[197]  Pierre Wolper,et al.  Reasoning about infinite computation paths , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[198]  Amir Pnueli,et al.  A Choppy Logic , 1986, LICS.

[199]  Pierre Wolper,et al.  Yet Another Process Logic (Preliminary Version) , 1983, Logic of Programs.

[200]  Mark Reynolds More Past Glories , 2000, LICS 2000.

[201]  Andrzej Indrzejczak,et al.  A Labelled Natural Deduction System for Linear Temporal Logic , 2003, Stud Logica.

[202]  S. Shelah The monadic theory of order , 1975, 2305.00968.