Numerical investigations of the role of curvature in strong segregation problems on a given surface
暂无分享,去创建一个
Rolf Krause | Roberto Croce | Frank E. Baginski | Susan Gillmor | F. Baginski | R. Krause | S. Gillmor | R. Croce
[1] S. Gillmor,et al. The role of Gauss curvature in a membrane phase separation problem , 2011 .
[2] Watt W. Webb,et al. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.
[3] Per-Olof Persson,et al. A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..
[4] Seifert,et al. Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models. , 1991, Physical review. A, Atomic, molecular, and optical physics.
[5] Manfredo P. do Carmo,et al. Differential geometry of curves and surfaces , 1976 .
[6] L. Modica. The gradient theory of phase transitions and the minimal interface criterion , 1987 .
[7] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .
[8] W. Webb,et al. Membrane elasticity in giant vesicles with fluid phase coexistence. , 2005, Biophysical journal.
[9] G. Meer,et al. Membrane lipids: where they are and how they behave , 2008, Nature Reviews Molecular Cell Biology.
[10] A. Edelman,et al. Mesh generation for implicit geometries , 2005 .
[11] Reinhard Lipowsky,et al. The conformation of membranes , 1991, Nature.
[12] W. Helfrich. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.