Adaptive isogeometric analysis with hierarchical box splines

Abstract Isogeometric analysis is a recently developed framework based on finite element analysis, where the simple building blocks in geometry and solution space are replaced by more complex and geometrically-oriented compounds. Box splines are an established tool to model complex geometry, and form an intermediate approach between classical tensor-product B-splines and splines over triangulations. Local refinement can be achieved by considering hierarchically nested sequences of box spline spaces. Since box splines do not offer special elements to impose boundary conditions for the numerical solution of partial differential equations (PDEs), we discuss a weak treatment of such boundary conditions. Along the domain boundary, an appropriate domain strip is introduced to enforce the boundary conditions in a weak sense. The thickness of the strip is adaptively defined in order to avoid unnecessary computations. Numerical examples show the optimal convergence rate of box splines and their hierarchical variants for the solution of PDEs.

[1]  Hendrik Speleers,et al.  Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.

[2]  Alessandro Reali,et al.  Parameter‐free, weak imposition of Dirichlet boundary conditions and coupling of trimmed and non‐conforming patches , 2015 .

[3]  Bert Jüttler,et al.  Adaptively refined multilevel spline spaces from generating systems , 2014, Comput. Aided Geom. Des..

[4]  Bert Jüttler,et al.  Completeness of generating systems for quadratic splines on adaptively refined criss-cross triangulations , 2016, Comput. Aided Geom. Des..

[5]  Volker John,et al.  A numerical study of a posteriori error estimators for convection–diffusion equations , 2000 .

[6]  Hendrik Speleers,et al.  Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .

[7]  Bert Jüttler,et al.  Adaptively refined multi-patch B-splines with enhanced smoothness , 2016, Appl. Math. Comput..

[8]  John A. Evans,et al.  Isogeometric triangular Bernstein–Bézier discretizations: Automatic mesh generation and geometrically exact finite element analysis , 2016 .

[9]  Hendrik Speleers,et al.  Splines over regular triangulations in numerical simulation , 2017, Comput. Aided Des..

[10]  Bert Jüttler,et al.  Characterization of bivariate hierarchical quartic box splines on a three-directional grid , 2016, Comput. Aided Geom. Des..

[11]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[12]  Hendrik Speleers,et al.  From NURBS to NURPS geometries , 2013 .

[13]  Jiansong Deng,et al.  Hierarchical B-splines on regular triangular partitions , 2014, Graph. Model..

[14]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[15]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[16]  Hendrik Speleers,et al.  Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..

[17]  Hendrik Speleers,et al.  Optimizing domain parameterization in isogeometric analysis based on Powell-Sabin splines , 2015, J. Comput. Appl. Math..

[18]  Markus Kästner,et al.  Bézier extraction and adaptive refinement of truncated hierarchical NURBS , 2016 .

[19]  Hendrik Speleers,et al.  A locking-free model for Reissner-Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS , 2015 .

[20]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[21]  Bert Jüttler,et al.  THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis , 2016 .

[22]  Ramon Codina,et al.  A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes , 2012 .

[23]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[24]  H. Speleers Isogeometric analysis with Powell-Sabin splines , 2012 .

[25]  Bernard Mourrain,et al.  Dimensions and bases of hierarchical tensor-product splines , 2014, J. Comput. Appl. Math..

[26]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[27]  Carlotta Giannelli,et al.  Adaptive isogeometric methods with hierarchical splines: error estimator and convergence , 2015, 1502.00565.

[28]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[29]  C. D. Boor,et al.  Box splines , 1993 .

[30]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[31]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[32]  Larry Schumaker,et al.  Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .

[33]  Bert Jüttler,et al.  Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..

[34]  H. Speleers Inner products of box splines and their derivatives , 2015 .

[35]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[36]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[37]  Bert Jüttler,et al.  On the completeness of hierarchical tensor-product B-splines , 2014, J. Comput. Appl. Math..