Adaptive isogeometric analysis with hierarchical box splines
暂无分享,去创建一个
Hendrik Speleers | Francesca Pelosi | Carlotta Giannelli | Tadej Kanduc | H. Speleers | Carlotta Giannelli | F. Pelosi | Tadej Kanduč
[1] Hendrik Speleers,et al. Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.
[2] Alessandro Reali,et al. Parameter‐free, weak imposition of Dirichlet boundary conditions and coupling of trimmed and non‐conforming patches , 2015 .
[3] Bert Jüttler,et al. Adaptively refined multilevel spline spaces from generating systems , 2014, Comput. Aided Geom. Des..
[4] Bert Jüttler,et al. Completeness of generating systems for quadratic splines on adaptively refined criss-cross triangulations , 2016, Comput. Aided Geom. Des..
[5] Volker John,et al. A numerical study of a posteriori error estimators for convection–diffusion equations , 2000 .
[6] Hendrik Speleers,et al. Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .
[7] Bert Jüttler,et al. Adaptively refined multi-patch B-splines with enhanced smoothness , 2016, Appl. Math. Comput..
[8] John A. Evans,et al. Isogeometric triangular Bernstein–Bézier discretizations: Automatic mesh generation and geometrically exact finite element analysis , 2016 .
[9] Hendrik Speleers,et al. Splines over regular triangulations in numerical simulation , 2017, Comput. Aided Des..
[10] Bert Jüttler,et al. Characterization of bivariate hierarchical quartic box splines on a three-directional grid , 2016, Comput. Aided Geom. Des..
[11] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[12] Hendrik Speleers,et al. From NURBS to NURPS geometries , 2013 .
[13] Jiansong Deng,et al. Hierarchical B-splines on regular triangular partitions , 2014, Graph. Model..
[14] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[15] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[16] Hendrik Speleers,et al. Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..
[17] Hendrik Speleers,et al. Optimizing domain parameterization in isogeometric analysis based on Powell-Sabin splines , 2015, J. Comput. Appl. Math..
[18] Markus Kästner,et al. Bézier extraction and adaptive refinement of truncated hierarchical NURBS , 2016 .
[19] Hendrik Speleers,et al. A locking-free model for Reissner-Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS , 2015 .
[20] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[21] Bert Jüttler,et al. THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis , 2016 .
[22] Ramon Codina,et al. A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes , 2012 .
[23] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[24] H. Speleers. Isogeometric analysis with Powell-Sabin splines , 2012 .
[25] Bernard Mourrain,et al. Dimensions and bases of hierarchical tensor-product splines , 2014, J. Comput. Appl. Math..
[26] D. F. Rogers,et al. An Introduction to NURBS: With Historical Perspective , 2011 .
[27] Carlotta Giannelli,et al. Adaptive isogeometric methods with hierarchical splines: error estimator and convergence , 2015, 1502.00565.
[28] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[29] C. D. Boor,et al. Box splines , 1993 .
[30] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[31] Paul Dierckx,et al. On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..
[32] Larry Schumaker,et al. Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .
[33] Bert Jüttler,et al. Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..
[34] H. Speleers. Inner products of box splines and their derivatives , 2015 .
[35] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[36] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[37] Bert Jüttler,et al. On the completeness of hierarchical tensor-product B-splines , 2014, J. Comput. Appl. Math..