An Adaptive Range-Angle-Doppler Processing Approach for FDA-MIMO Radar Using Three-Dimensional Localization

High pulse repetition frequency incurs range ambiguity in radar systems, which in turn results in clutter suppression performance degradation and parameter estimation ambiguities. To tackle this issue, this paper proposes an adaptive range-angle-Doppler processing approach with airborne frequency diverse array (FDA) for multiple-input multiple-output (MIMO) radar. The FDA employs a small frequency increment across array elements and introduces additional controllable degrees-of-freedom (DOFs) in range dimension in the transmit antenna. Thus, it is able to perform range-angle-Doppler processing by exploiting the DOFs in transmit, receive, and pulse dimensions in the FDA-MIMO radar. By properly designing the frequency increment of the FDA, the clutter spectra of different ambiguous range regions can be discriminable in the transmit-receive spatial domains. As a result, multiple beams are formed in the transmit spatial, receive spatial, and Doppler domains and clutters from different range regions can be suppressed. An enhanced three-dimensional localization technique is proposed for the case with severe range ambiguity problem, which evidently reduces the dimensions of the processor and efficiently suppresses clutter in practical applications. Several numerical examples are presented to verify the effectiveness of the proposed approach.

[1]  Michael Zatman The applicability of GMTI MIMO Radar , 2010, 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers.

[2]  M. Wicks,et al.  Range-dependent beamforming using element level waveform diversity , 2006, 2006 International Waveform Diversity & Design Conference.

[3]  M. Seçmen,et al.  Frequency Diverse Array Antenna with Periodic Time Modulated Pattern in Range and Angle , 2007, 2007 IEEE Radar Conference.

[4]  Daniel W. Bliss,et al.  MIMO Radar Waveform Constraints for GMTI , 2010, IEEE Journal of Selected Topics in Signal Processing.

[5]  Wen-Qin Wang,et al.  A Flexible Phased-MIMO Array Antenna with Transmit Beamforming , 2012 .

[6]  C.J. Baker,et al.  Developments in the Frequency Diverse Bistatic System , 2009, 2009 IEEE Radar Conference.

[7]  C.J. Baker,et al.  Frequency diverse array radars , 2006, 2006 IEEE Conference on Radar.

[8]  Wen-Qin Wang,et al.  Near-Space Vehicle-Borne SAR With Reflector Antenna for High-Resolution and Wide-Swath Remote Sensing , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Nathan A. Goodman Angle-dependent range sidelobes of MIMO waveforms , 2015, 2015 IEEE Radar Conference (RadarCon).

[10]  W.L. Melvin,et al.  Adaptive cancellation method for geometry-induced nonstationary bistatic clutter environments , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[11]  Mark E. Oxley,et al.  Localised three-dimensional adaptive spatialtemporal processing for airborne radar , 2003 .

[12]  Murat Akçakaya,et al.  MIMO Radar Sensitivity Analysis for Target Detection , 2011, IEEE Transactions on Signal Processing.

[13]  Jingjing Huang,et al.  Frequency diverse array with beam scanning feature , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[14]  Cagri Cetintepe,et al.  Multipath Characteristics of Frequency Diverse Arrays Over a Ground Plane , 2014, IEEE Transactions on Antennas and Propagation.

[15]  D. W. Bliss,et al.  GMTI MIMO radar , 2009, 2009 International Waveform Diversity and Design Conference.

[16]  Wen-Qin Wang,et al.  Multichannel SAR Using Waveform Diversity and Distinct Carrier Frequency for Ground Moving Target Indication , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[17]  Mark E. Oxley,et al.  Localized three-dimensional adaptive spatial-temporal processing for airborne radar , 2002, RADAR 2002.

[18]  Guisheng Liao,et al.  Space-Time-Range Adaptive Processing for Airborne Radar Systems , 2015, IEEE Sensors Journal.

[19]  Jun Jason Zhang,et al.  MIMO Radar with Frequency Diversity , 2009, 2009 International Waveform Diversity and Design Conference.

[20]  A. Hizal,et al.  Exploitation of Linear Frequency Modulated Continuous Waveform (LFMCW) for Frequency Diverse Arrays , 2013, IEEE Transactions on Antennas and Propagation.

[21]  Michael C. Wicks,et al.  Forward-looking radar GMTI benefits using a linear frequency diverse array , 2006 .

[22]  Qian He,et al.  MIMO Radar Moving Target Detection in Homogeneous Clutter , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[23]  L.J. Cimini,et al.  MIMO Radar with Widely Separated Antennas , 2008, IEEE Signal Processing Magazine.

[24]  Ed Mel Tomme,et al.  Balloons in Today's Military? an Introduction to the Near-Space Concept , 2005 .

[25]  Saman S. Abeysekera,et al.  Receiver Design for Range and Doppler Sidelobe Suppression Using MIMO and Phased-Array Radar , 2013, IEEE Transactions on Signal Processing.

[26]  Mengdao Xing,et al.  New Parameter Estimation and Detection Algorithm for High Speed Small Target , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[27]  Jingjing Huang,et al.  Frequency diverse array: Simulation and design , 2009, 2009 Loughborough Antennas & Propagation Conference.

[28]  Jian Li,et al.  MIMO Radar with Colocated Antennas , 2007, IEEE Signal Processing Magazine.

[29]  Gerhard Krieger,et al.  MIMO-SAR: Opportunities and Pitfalls , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[30]  P. P. Vaidyanathan,et al.  MIMO Radar Space–Time Adaptive Processing Using Prolate Spheroidal Wave Functions , 2008, IEEE Transactions on Signal Processing.

[31]  Alper Aytun Frequency diverse array radar , 2010 .

[32]  Rémy Boyer,et al.  Performance Bounds and Angular Resolution Limit for the Moving Colocated MIMO Radar , 2011, IEEE Transactions on Signal Processing.

[33]  Michael C. Wicks,et al.  Clutter suppression using elevation interferometry fused with space-time adaptive processing , 2001 .

[34]  A. Lee Swindlehurst,et al.  IEEE Journal of Selected Topics in Signal Processing Inaugural Issue: [editor-in-chief's message] , 2007, J. Sel. Topics Signal Processing.

[35]  W.L. Melvin,et al.  A STAP overview , 2004, IEEE Aerospace and Electronic Systems Magazine.

[36]  Wen-Qin Wang,et al.  Transmit Subaperturing for Range and Angle Estimation in Frequency Diverse Array Radar , 2014, IEEE Transactions on Signal Processing.

[37]  Guisheng Liao,et al.  Range Ambiguous Clutter Suppression for Airborne FDA-STAP Radar , 2015, IEEE Journal of Selected Topics in Signal Processing.

[38]  Hugh D. Griffiths,et al.  Frequency Diverse MIMO Techniques for Radar , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[39]  Shannon D. Blunt,et al.  Analysis of range-angle coupled beamforming with frequency-diverse chirps , 2009, 2009 International Waveform Diversity and Design Conference.

[40]  Diego Cristallini,et al.  A Robust Direct Data Domain Approach for STAP , 2012, IEEE Transactions on Signal Processing.

[41]  Hongbin Li,et al.  Transmit Subaperturing for MIMO Radars With Co-Located Antennas , 2010, IEEE Journal of Selected Topics in Signal Processing.

[42]  Sergiy A. Vorobyov,et al.  Moving Target Parameters Estimation in Noncoherent MIMO Radar Systems , 2012, IEEE Transactions on Signal Processing.

[43]  Wen-Qin Wang,et al.  Phased-MIMO Radar With Frequency Diversity for Range-Dependent Beamforming , 2013, IEEE Sensors Journal.

[44]  T. Sarkar,et al.  A deterministic least-squares approach to space-time adaptive processing (STAP) , 2001 .

[45]  Ping Li,et al.  Corrections to “Range-Angle-Dependent Beamforming of Pulsed-Frequency Diverse Array” , 2018, IEEE Transactions on Antennas and Propagation.