Switchable ionic selectivity of membranes with electrically conductive surface: Theory and experiment

[1]  Huijuan Liu,et al.  Improving ion rejection of graphene oxide conductive membranes by applying electric field , 2020 .

[2]  I. Ryzhkov,et al.  Modelling of Conductive Nanoporous Membranes with Switchable Ionic Selectivity , 2020, Membranes and Membrane Technologies.

[3]  I. Ryzhkov,et al.  Modelling of Electrochemically Switchable Ion Transport in Nanoporous Membranes with Conductive Surface , 2019, Journal of Siberian Federal University. Mathematics & Physics.

[4]  P. M. Biesheuvel,et al.  Theory of Ion and Water Transport in Electron-Conducting Membrane Pores with p H-Dependent Chemical Charge , 2019, Physical Review Applied.

[5]  I. Ryzhkov,et al.  Coupled thermal analysis of carbon layers deposited on alumina nanofibres , 2019, Thermochimica Acta.

[6]  P. Apel,et al.  Prospects of Membrane Science Development , 2019, Membranes and Membrane Technologies.

[7]  J. Fuhrmann,et al.  Induced charge electroosmotic flow with finite ion size and solvation effects , 2019, Electrochimica Acta.

[8]  Hongtao Yu,et al.  Improving Ion Rejection of Conductive Nanofiltration Membrane through Electrically Enhanced Surface Charge Density. , 2018, Environmental science & technology.

[9]  Wanlin Guo,et al.  Electrically Tunable Ion Selectivity of Charged Nanopores , 2018, The Journal of Physical Chemistry C.

[10]  R. Ghosh Stimuli-Responsive Membranes for Separations , 2018, Polymers and Polymeric Composites: A Reference Series.

[11]  I. Ryzhkov,et al.  Theoretical Study of Electrolyte Diffusion through Polarizable Nanopores , 2018 .

[12]  G. P. Simon,et al.  Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes , 2018, Nature Nanotechnology.

[13]  I. Ryzhkov,et al.  Effect of Electric Field on Ion Transport in Nanoporous Membranes with Conductive Surface , 2018, Petroleum Chemistry.

[14]  P. M. Biesheuvel,et al.  AC-driven electro-osmotic flow in charged nanopores , 2018, EPL (Europhysics Letters).

[15]  Jianbo Zhang,et al.  Double layer of platinum electrodes: Non-monotonic surface charging phenomena and negative double layer capacitance. , 2018, The Journal of chemical physics.

[16]  I. Ryzhkov,et al.  On the origin of membrane potential in membranes with polarizable nanopores , 2017 .

[17]  I. Ryzhkov,et al.  Induced-Charge Enhancement of the Diffusion Potential in Membranes with Polarizable Nanopores. , 2017, Physical review letters.

[18]  I. Ryzhkov,et al.  Carbon Coated Alumina Nanofiber Membranes for Selective Ion Transport , 2017 .

[19]  Michele Tedesco,et al.  Counter-ion transport number and membrane potential in working membrane systems. , 2017, Journal of colloid and interface science.

[20]  I. Ryzhkov,et al.  Preparation and ionic selectivity of carbon-coated alumina nanofiber membranes , 2017, Petroleum Chemistry.

[21]  I. Ryzhkov,et al.  Theoretical study of electrolyte transport in nanofiltration membranes with constant surface potential/charge density , 2016 .

[22]  Jianbo Zhang,et al.  Theory of electrostatic phenomena in water-filled Pt nanopores. , 2016, Faraday discussions.

[23]  P. M. Biesheuvel,et al.  Revisiting Morrison and Osterle 1965: the efficiency of membrane-based electrokinetic energy conversion , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  Jianbo Zhang,et al.  Non-monotonic Surface Charging Behavior of Platinum: A Paradigm Change , 2016 .

[25]  R. Bailey,et al.  Nanoporous Gold Membranes as Robust Constructs for Selectively Tunable Chemical Transport , 2016 .

[26]  Wei Wang,et al.  Stimuli-responsive smart gating membranes. , 2016, Chemical Society reviews.

[27]  T. Squires,et al.  Determination of surface potential and electrical double-layer structure at the aqueous electrolyte-nanoparticle interface , 2016 .

[28]  M. Borkovec,et al.  Charge Regulation in the Electrical Double Layer: Ion Adsorption and Surface Interactions. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[29]  P. M. Biesheuvel,et al.  Analysis of electrolyte transport through charged nanopores. , 2015, Physical review. E.

[30]  Mohd Bismillah Ansari,et al.  Stimuli responsive drug delivery application of polymer and silica in biomedicine. , 2015, Journal of materials chemistry. B.

[31]  I. Szleifer,et al.  Transport mechanisms in nanopores and nanochannels: Can we mimic nature? , 2015 .

[32]  Yoshinobu Tanaka,et al.  Ion Exchange Membranes: Fundamentals and Applications , 2015 .

[33]  A. Gugliuzza Smart membranes and sensors : synthesis, characterization, and applications , 2014 .

[34]  C. R. Martin,et al.  Voltage charging enhances ionic conductivity in gold nanotube membranes. , 2014, ACS nano.

[35]  S. Dai,et al.  Electrochemical control of ion transport through a mesoporous carbon membrane. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[36]  Laurent Pilon,et al.  Scaling laws for carbon-based electric double layer capacitors , 2013 .

[37]  M. Reed,et al.  Electric field modulation of the membrane potential in solid-state ion channels. , 2012, Nano letters.

[38]  R. E. Gyurcsányi,et al.  Nernst-Planck/Poisson model for the potential response of permselective gold nanopores , 2012 .

[39]  L. Zhuang,et al.  Ionic conductivity of pure water in charged porous matrix. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[40]  M. Reed,et al.  Field-effect reconfigurable nanofluidic ionic diodes. , 2011, Nature communications.

[41]  T. Albrecht How to understand and interpret current flow in nanopore/electrode devices. , 2011, ACS nano.

[42]  Wei Guo,et al.  Biomimetic smart nanopores and nanochannels. , 2011, Chemical Society reviews.

[43]  S. R. Wickramasinghe,et al.  Stimuli-responsive membranes , 2010 .

[44]  Z. Siwy,et al.  Engineered voltage-responsive nanopores. , 2010, Chemical Society reviews.

[45]  C. Amatore,et al.  Theory of ion transport in electrochemically switchable nanoporous metallized membranes. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[46]  P. Renaud,et al.  Transport phenomena in nanofluidics , 2008 .

[47]  T. M. Brown,et al.  By Electrochemical methods , 2007 .

[48]  P. Stroeve,et al.  pH and Ionic Strength Effects on Amino Acid Transport through Au-Nanotubule Membranes Charged with Self-Assembled Monolayers , 2007 .

[49]  L. A. Baker,et al.  Biomaterials and Biotechnologies Based on Nanotube Membranes , 2005 .

[50]  P. Ramirez,et al.  Modeling of pH-Switchable Ion Transport and Selectivity in Nanopore Membranes with Fixed Charges , 2003 .

[51]  Martin Z. Bazant,et al.  Induced-charge electrokinetic phenomena , 2003 .

[52]  J. Lyklema,et al.  Double layers at amphifunctionally electrified interfaces in the presence of electrolytes containing specifically adsorbing ions , 2002 .

[53]  J. Duval,et al.  Amphifunctionally Electrified Interfaces: Coupling of Electronic and Ionic Surface-Charging Processes , 2001 .

[54]  Matsuhiko Nishizawa,et al.  Controlling Ion‐Transport Selectivity in Gold Nanotubule Membranes , 2001 .

[55]  Charles R. Martin,et al.  Investigations of Potential-Dependent Fluxes of Ionic Permeates in Gold Nanotubule Membranes Prepared via the Template Method , 2001 .

[56]  A. Foissy,et al.  Determining the Zeta Potential of Porous Membranes Using Electrolyte Conductivity inside Pores. , 2001, Journal of colloid and interface science.

[57]  Szymczyk,et al.  Electrokinetic Phenomena in Homogeneous Cylindrical Pores. , 1999, Journal of colloid and interface science.

[58]  Matsuhiko Nishizawa,et al.  Metal Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity , 1995, Science.

[59]  Ruben G. Carbonell,et al.  Transport of electrolytes in charged pores: Analysis using the method of spatial averaging , 1989 .

[60]  J. Diamond,et al.  Effects of unstirred layers on membrane phenomena. , 1984, Physiological reviews.

[61]  T. Pedley,et al.  Calculation of unstirred layer thickness in membrane transport experiments: a survey , 1983, Quarterly Reviews of Biophysics.

[62]  J. F. Osterle,et al.  Membrane transport characteristics of ultrafine capillaries. , 1968, The Journal of chemical physics.

[63]  S. Low,et al.  Progress of stimuli responsive membranes in water treatment , 2019, Advanced Nanomaterials for Membrane Synthesis and its Applications.

[64]  L. Chu Smart Membrane Materials and Systems , 2011 .