SpaceWalker enables interactive gradient exploration for spatial transcriptomics data

[1]  Baldur van Lew,et al.  ManiVault: A Flexible and Extensible Visual Analytics Framework for High-Dimensional Data , 2023, IEEE Transactions on Visualization and Computer Graphics.

[2]  Brian R. Long,et al.  A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain , 2023, bioRxiv.

[3]  Brian R. Long,et al.  SpaceTx: A Roadmap for Benchmarking Spatial Transcriptomics Exploration of the Brain , 2023, 2301.08436.

[4]  Lars E. Borm,et al.  Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH , 2022, Nature Biotechnology.

[5]  E. Browne,et al.  Towards a comprehensive evaluation of dimension reduction methods for transcriptomic data visualization , 2022, Communications Biology.

[6]  Brian R. Long,et al.  Reference-based cell type matching of spatial transcriptomics data , 2022, bioRxiv.

[7]  Fabian J Theis,et al.  Squidpy: a scalable framework for spatial omics analysis , 2022, Nature Methods.

[8]  Mohammed Muzamil Khan,et al.  Advances in spatial transcriptomic data analysis , 2021, Genome research.

[9]  Gustavo S. França,et al.  Exploring tissue architecture using spatial transcriptomics , 2021, Nature.

[10]  M. Reinders,et al.  SIRV: spatial inference of RNA velocity at the single-cell resolution , 2021, bioRxiv.

[11]  Jin Liu,et al.  SC-MEB: spatial clustering with hidden Markov random field using empirical Bayes , 2021, bioRxiv.

[12]  Raphael Gottardo,et al.  Spatial transcriptomics at subspot resolution with BayesSpace , 2021, Nature Biotechnology.

[13]  Sidney M. Bell,et al.  cellxgene: a performant, scalable exploration platform for high dimensional sparse matrices , 2021, bioRxiv.

[14]  L. Cai,et al.  Giotto: a toolbox for integrative analysis and visualization of spatial expression data , 2021, Genome Biology.

[15]  Ahmed Mahfouz,et al.  Cytosplore-Transcriptomics: a scalable inter-active framework for single-cell RNA sequencing data analysis , 2020, bioRxiv.

[16]  Stefan Kurtenbach,et al.  PieParty: visualizing cells from scRNA-seq data as pie charts , 2020, Life Science Alliance.

[17]  S. Linnarsson,et al.  Molecular architecture of the developing mouse brain , 2020, Nature.

[18]  Q. Nguyen,et al.  stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues , 2020, bioRxiv.

[19]  Yvan Saeys,et al.  A comparison of single-cell trajectory inference methods , 2019, Nature Biotechnology.

[20]  Guocheng Yuan,et al.  Identification of spatially associated subpopulations by combining scRNA-seq and sequential fluorescence in situ hybridization data , 2018, Nature Biotechnology.

[21]  S. Teichmann,et al.  SpatialDE: identification of spatially variable genes , 2018, Nature Methods.

[22]  R. Sandberg,et al.  Identification of spatial expression trends in single-cell gene expression data , 2018, Nature Methods.

[23]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[24]  Jeff Johnson,et al.  Billion-Scale Similarity Search with GPUs , 2017, IEEE Transactions on Big Data.

[25]  Patrik L. Ståhl,et al.  Visualization and analysis of gene expression in tissue sections by spatial transcriptomics , 2016, Science.

[26]  Elmar Eisemann,et al.  Cytosplore: Interactive Immune Cell Phenotyping for Large Single‐Cell Datasets , 2016, Comput. Graph. Forum.

[27]  K. Esbensen,et al.  Principal component analysis , 1987 .

[28]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[29]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .