A PI/PID controller for time delay systems with desired closed loop time response and guaranteed gain and phase margins

Abstract In this article we present a graphical tuning method of PI/PID controller for first order and second order plus time delay systems using dominant pole placement approach with guaranteed gain margin (GM) and phase margin (PM). The stability equation method and gain phase margin tester have been used to portray constant GM and PM boundaries. The PID controller parameters have been obtained for different dominant poles and plotted graphically in the parameters plane of controller within the specified GM and PM regions. To demonstrate the effectiveness and confirm the validity of the proposed methodology, three examples with numerical simulations are presented.

[1]  Shang-Hong Shih,et al.  Graphical computation of gain and phase margin specifications-oriented robust PID controllers for uncertain systems with time-varying delay , 2010, Proceedings of the 29th Chinese Control Conference.

[2]  Z. Bien,et al.  A root-locus technique for linear systems with delay , 1982 .

[3]  Nusret Tan,et al.  Computation of stabilizing PI and PID controllers for processes with time delay. , 2005, ISA transactions.

[4]  Boris T. Polyak,et al.  Stability regions in the parameter space: D-decomposition revisited , 2006, Autom..

[5]  Sigurd Skogestad,et al.  Simple analytic rules for model reduction and PID controller tuning , 2003 .

[6]  Norman S. Nise,et al.  Control Systems Engineering , 1991 .

[7]  Saptarshi Das,et al.  A Conformal Mapping Based Fractional Order Approach for Sub-optimal Tuning of PID Controllers with Guaranteed Dominant Pole Placement , 2012, 1202.5662.

[8]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[9]  Shankar P. Bhattacharyya,et al.  Structure and synthesis of PID controllers , 2000 .

[10]  Qing-Guo Wang,et al.  Development of D-decomposition method for computing stabilizing gain ranges for general delay systems , 2015 .

[11]  Toru Fujinaka,et al.  Discrete-time optimal regulator with closed-loop poles in a prescribed region , 1988 .

[12]  Gaoxi Xiao,et al.  An analytical method for PID controller tuning with specified gain and phase margins for integral plus time delay processes. , 2011, ISA transactions.

[13]  D.-J. Wang,et al.  Stabilising regions of PID controllers for nth-order all pole plants with dead-time , 2007 .

[14]  K. S. Yeung,et al.  Root-locus plot of systems with time delay , 1982 .

[15]  Wen Tan,et al.  Comparison of some well-known PID tuning formulas , 2006, Comput. Chem. Eng..

[16]  Jan Cvejn,et al.  Sub-optimal PID controller settings for FOPDT systems with long dead time , 2009 .

[17]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[18]  De-Jin Wang,et al.  Synthesis of PID controllers for high-order plants with time-delay , 2009 .

[19]  Tong-heng Lee,et al.  PI/PID controller tuning via LQR approach , 2000 .

[20]  R. Lanzkron,et al.  D-decomposition analysis of automatic control systems , 1959 .

[21]  Dirk Roose,et al.  Limitations of a class of stabilization methods for delay systems , 2001, IEEE Trans. Autom. Control..

[22]  W. Michiels,et al.  Control design for time-delay systems based on quasi-direct pole placement , 2010 .

[23]  Karl Johan Åström,et al.  Guaranteed dominant pole placement with PID controllers , 2009 .

[24]  De-Jin Wang A PID controller set of guaranteeing stability and gain and phase margins for time-delay systems , 2012 .

[25]  Pavel Zítek,et al.  Dimensional analysis approach to dominant three-pole placement in delayed PID control loops , 2013 .

[26]  S. Lunel,et al.  Delay Equations. Functional-, Complex-, and Nonlinear Analysis , 1995 .

[27]  Ramon Vilanova,et al.  PID Control in the Third Millennium , 2012 .