Impact of planar microcavity effects on light extraction-Part II: selected exact simulations and role of photon recycling

In this paper we use an exact calculation of dipole emission modifications in an arbitrary multilayer structure to obtain the extraction efficiency from realistic planar microcavities, additional insights gained through this exact approach compared to the simplified one of Part I of this paper [see ibid., p. 1612, 1998] are first discussed in the case of a dielectric slab. We next optimize for the extraction purpose asymmetric cavities bounded by metal on one side and dielectric mirrors on the output side for any pair of material indices in a broad range (n=1.4-4). The decrease of extraction when taking into account relative linewidths of the source of a few percent is shown to be moderate, allowing the large enhancements of monochromatic light to be maintained in many useful cases. The fractions of power emitted into guided modes, leaky modes, etc., are detailed. The beneficial role of possible photon recycling (reabsorption of emitted photons by the active layer) on extraction efficiency is evaluated using the fractions of power in guided and leaky modes. Extraction efficiencies in the 50% range are predicted for optimized, hybrid, planar metal-semiconductor structures for a wide range of active materials and wavelengths. We show that exact calculations justify the simple model used in Part I evaluating the extraction efficiency of a microcavity-based light-emitting diode as 1/m/sub c/ where m/sub c/ is the effective cavity order.

[1]  T. Ishihara,et al.  ENHANCED TRANSFER EFFICIENCY IN ALGAAS ASYMMETRIC PLANAR MICROCAVITIES , 1994 .

[2]  W. J. Choyke,et al.  Below‐band‐gap photon recycling in AlxGa1−xAs , 1989 .

[3]  Uziel Koren,et al.  Photonic Integrated Circuits , 1989 .

[4]  R. Silbey,et al.  Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems , 1975 .

[5]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[6]  C. Henry,et al.  Determination of the refractive index of InGaAsP epitaxial layers by mode line luminescence spectroscopy , 1985 .

[7]  Uziel Koren,et al.  Photonic integrated circuits , 1990, AT&T Technical Journal.

[8]  N. Magnea,et al.  II-VI Resonant Cavity Light Emitting Diodes for the Mid-Infrared , 1996 .

[9]  Yihong Wu,et al.  Structure-dependent threshold current density for CdZnSe-based II-VI semiconductor lasers , 1994 .

[10]  R. A. Logan,et al.  High Efficiency, Narrow Spectrum Resonant Cavity Light Emitting Diodes , 1995 .

[11]  K. Neyts Cavity Effects in Thin Film Phosphors Based on Zns , 1996 .

[12]  Shuji Nakamura,et al.  III–V nitride based light-emitting devices , 1997 .

[13]  Piet Demeester,et al.  16% external quantum efficiency from planar microcavity LEDs at 940nm by precise matching of cavity wavelength , 1995 .

[14]  J. Hegarty,et al.  GROWTH AND CHARACTERIZATION OF AN EPITAXIALLY GROWN ZNSSE/MNZNSSE DISTRIBUTED BRAGG REFLECTOR , 1995 .

[15]  F. A. Kish,et al.  Wafer bonding of 50‐mm diameter GaP to AlGaInP‐GaP light‐emitting diode wafers , 1996 .

[16]  M. George Craford,et al.  Chapter 2 Overview of Device Issues in High-Brightness Light-Emitting Diodes , 1997 .

[17]  C. Weisbuch,et al.  Impact of planar microcavity effects on light extraction-Part I: basic concepts and analytical trends , 1998 .

[18]  Dennis G. Deppe,et al.  Spontaneous emission from a dipole in a semiconductor microcavity , 1991 .

[19]  W. Trimble Road COMMERCIAL LIGHT EMITTING DIODE TECHNOLOGY: Status, Trends, and Possible Future Performance , 1996 .

[20]  Eli Yablonovitch,et al.  Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures , 1993 .

[21]  P. Demeester,et al.  High efficiency planar microcavity LED's: comparison of design and experiment , 1995, IEEE Photonics Technology Letters.

[22]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[23]  Piet Demeester,et al.  High efficiency (>20%) microcavity LEDs , 1996 .

[24]  Frank M. Steranka,et al.  Chapter 3 AlGaAs Red Light-Emitting Diodes , 1997 .

[25]  R. Powell,et al.  Refractive indices of zincblende structure β‐GaN(001) in the subband‐gap region (0.7–3.3 eV) , 1996 .

[26]  Joel N. Schulman,et al.  Wave Mechanics Applied to Semiconductor Heterostructures , 1991 .

[27]  Piet Demeester,et al.  Recycling of guided mode light emission in planar microcavity light emitting diodes , 1997 .

[28]  C. P. Kuo,et al.  Very high‐efficiency semiconductor wafer‐bonded transparent‐substrate (AlxGa1−x)0.5In0.5P/GaP light‐emitting diodes , 1994 .

[29]  Gustaaf Borghs,et al.  Planar substrate-emitting-microcavity light-emitting diodes with 20% external QE , 1997, Photonics West.

[30]  Hadis Morkoç,et al.  Emerging gallium nitride based devices , 1995, Proc. IEEE.

[31]  A. L. Bradley,et al.  Epitaxial lift‐off of ZnSe based II–VI structures , 1995 .

[32]  W. Lukosz,et al.  Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers , 1980 .

[33]  H. Benisty,et al.  Method of source terms for dipole emission modification in modes of arbitrary planar structures , 1998 .

[34]  Y. Kadoya,et al.  Influence of photon reabsorption on the transfer efficiency of output intensity in semiconductor microcavities , 1997, IEEE Photonics Technology Letters.

[35]  Piet Demeester,et al.  6% external quantum efficiency from InGaAs/(Al)GaAs single quantum well planar microcavity LEDs , 1994 .

[36]  G. W. Ford,et al.  Electromagnetic interactions of molecules with metal surfaces , 1984 .

[37]  E. Schubert,et al.  Temperature and modulation characteristics of resonant-cavity light-emitting diodes , 1996 .

[38]  Machida,et al.  Modification of spontaneous emission rate in planar dielectric microcavity structures. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[39]  D. E. Gray,et al.  American Institute of Physics Handbook , 1957 .

[40]  Chapter 15 – PHOTONIC INTEGRATED CIRCUITS , 1995 .

[41]  A. Kastler,et al.  Atomes à I’Intérieur d’un Interféromètre Perot-Fabry , 1962 .

[42]  R. Moon MOVPE: is there any other technology for optoelectronics? , 1997 .

[43]  M. Craford Commercial Light Emitting Diode Technology , 1996 .

[44]  W. Lukosz Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation , 1979 .

[45]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[46]  R. A. Logan,et al.  Enhanced spectral power density and reduced linewidth at 1.3 μm in an InGaAsP quantum well resonant‐cavity light‐emitting diode , 1992 .

[47]  F. A. Kish,et al.  Chapter 5 AlGalnP Light-Emitting Diodes , 1997 .

[48]  P. C. Becker,et al.  Spontaneous Emission Control in Planar Structures: Er3+ IN Si/SiO2 Microcavities , 1995 .

[49]  Isamu Akasaki,et al.  High‐quality GaInN/GaN multiple quantum wells , 1996 .

[50]  S. Ho,et al.  Spontaneous emission from excitons in thin dielectric layers. , 1993, Optics letters.