A Geostationary Instrument Simulator for Aerosol Observing System Simulation Experiments

In the near future, there will be several new instruments measuring atmospheric composition from geostationary orbit over North America, East Asia, and Europe. This constellation of satellites will provide high resolution, time resolved measurements of trace gases and aerosols for monitoring air quality and tracking pollution sources. This paper describes a detailed, fast, and accurate (less than 1.0% uncertainty) method for calculating synthetic top of the atmosphere (TOA) radiances from a global simulation with a mesoscale free running model, the GEOS-5 Nature Run, for remote sensing instruments in geostationary orbit that measure in the ultraviolet-visible spectral range (UV-Vis). Generating these synthetic observations is the first step of an Observing System Simulation Experiment (OSSE), a framework for evaluating the impact of a new observation or algorithm. This paper provides details of the model sampling, aerosol and cloud optical properties, surface reflectance modeling, Rayleigh scattering calculations, and a discussion of the uncertainties of the simulated TOA radiance. An application for the simulated TOA radiance observations is demonstrated in the manuscript. Simulated TEMPO (Tropospheric Emissions: Monitoring of Pollution) and GOES-R (Geostationary Operational Environmental Satellites) observations were used to show how observations from the two instruments could be combined to facilitate aerosol type discrimination. The results demonstrate the viability of a detailed instrument simulator for radiance measurements in the UV-Vis that is capable of accurately simulating high resolution, time-resolved measurements with reasonable computational efficiency.

[1]  H. Worden,et al.  On the feasibility of monitoring carbon monoxide in the lower troposphere from a constellation of Northern Hemisphere geostationary satellites. (Part 1) , 2015 .

[2]  H. Treut,et al.  THE CALIPSO MISSION: A Global 3D View of Aerosols and Clouds , 2010 .

[3]  M. Wendisch,et al.  IPRT polarized radiative transfer model intercomparison project - Three-dimensional test cases (phase B) , 2019, 1901.01828.

[4]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[5]  Irina N. Sokolik,et al.  Direct radiative forcing by anthropogenic airborne mineral aerosols , 1996, Nature.

[6]  D. Jacob,et al.  Global simulation of tropospheric chemistry at 12.5 km resolution: performance and evaluation of the GEOS-Chem chemical module (v10-1) within the NASA GEOS Earth system model (GEOS-5 ESM) , 2018, Geoscientific Model Development.

[7]  Boyan Petkov,et al.  Improved algorithm for calculations of Rayleigh-scattering optical depth in standard atmospheres. , 2005, Applied optics.

[8]  Xiong Liu,et al.  A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R , 2014 .

[9]  Annmarie Eldering,et al.  Ozone air quality measurement requirements for a geostationary satellite mission , 2011 .

[10]  Andrew A. Lacis,et al.  Errors induced by the neglect of polarization in radiance calculations for rayleigh-scattering atmospheres , 1994 .

[11]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[12]  Bernhard Mayer,et al.  The impact of aerosols on polarized sky radiance: model development, validation, and applications , 2009 .

[13]  Zhaoyan Liu,et al.  Asian dust transported one full circuit around the globe , 2009 .

[14]  Nathaniel J. Livesey,et al.  Model study of the cross-tropopause transport of biomass burning pollution , 2007 .

[15]  Xiong Liu,et al.  Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI spectra , 2012 .

[16]  Axel Lauer,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Analysis and quantification of the diversities of aerosol life cycles , 2022 .

[17]  M. Razinger,et al.  Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power , 2011 .

[18]  Bryan A. Baum,et al.  Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part I: Microphysical Data and Models. , 2005 .

[19]  E. Vermote,et al.  Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance. , 2006, Applied optics.

[20]  M. Chin,et al.  Online simulations of global aerosol distributions in the NASA GEOS‐4 model and comparisons to satellite and ground‐based aerosol optical depth , 2010 .

[21]  C. Flynn,et al.  The MERRA-2 Aerosol Reanalysis, 1980 - onward, Part I: System Description and Data Assimilation Evaluation. , 2017, Journal of climate.

[22]  W. Wiscombe Improved Mie scattering algorithms. , 1980, Applied optics.

[23]  I. Sokolik,et al.  The Dust Direct Radiative Impact and Its Sensitivity to the Land Surface State and Key Minerals in the WRF‐Chem‐DuMo Model: A Case Study of Dust Storms in Central Asia , 2018 .

[24]  J. Slusser,et al.  On Rayleigh Optical Depth Calculations , 1999 .

[25]  A. Bouwman,et al.  Emission database for global atmospheric research (Edgar) , 1994, Environmental monitoring and assessment.

[26]  W. Tao,et al.  Representation of 3D heterogeneous cloud fields using copulas: Theory for water clouds , 2008 .

[27]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[28]  C. E. Siewert,et al.  A discrete-ordinates solution for radiative-transfer models that include polarization effects , 2000 .

[29]  Bryan N. Duncan,et al.  Observationally derived transport diagnostics for the lowermost stratosphere and their application to the GMI chemistry and transport model , 2007 .

[30]  James R. Campbell,et al.  Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis , 2014 .

[31]  J. Baldasano,et al.  Interactive dust‐radiation modeling: A step to improve weather forecasts , 2006 .

[32]  Qiang Zhang,et al.  Modeling uncertainties for tropospheric nitrogen dioxide columns affecting satellite-based inverse modeling of nitrogen oxides emissions , 2012 .

[33]  J. Riedi,et al.  High Sensitivity of Arctic Liquid Clouds to Long‐Range Anthropogenic Aerosol Transport , 2018 .

[34]  Teruyuki Nakajima,et al.  Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements , 2002 .

[35]  Tatsuya Yokota,et al.  Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere–ocean system , 2010 .

[36]  Richard Siddans,et al.  An Observing System Simulation Experiment (OSSE) for Aerosol Optical Depth from Satellites , 2009 .

[37]  S. Gong,et al.  A parameterization of sea‐salt aerosol source function for sub‐ and super‐micron particles , 2003 .

[38]  Paul Ingmann,et al.  Requirements for the GMES Atmosphere Service and ESA's implementation concept: Sentinels-4/-5 and -5p , 2012 .

[39]  Peter M Norris,et al.  Monte Carlo Bayesian inference on a statistical model of sub-gridcolumn moisture variability using high-resolution cloud observations. Part 1: Method. , 2016, Quarterly journal of the Royal Meteorological Society. Royal Meteorological Society.

[40]  A. J. Kettle,et al.  An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean , 2011 .

[41]  Merritt N. Deeter,et al.  A satellite observation system simulation experiment for carbon monoxide in the lowermost troposphere , 2009 .

[42]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[43]  R. Spurr LIDORT and VLIDORT: Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems , 2008 .

[44]  Paul J. DeMott,et al.  Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL‐FACE results , 2003 .

[45]  K. Evans The Spherical Harmonics Discrete Ordinate Method for Three-Dimensional Atmospheric Radiative Transfer , 1998 .

[46]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[47]  M. Chin,et al.  Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations , 2012 .

[48]  Robert J. D. Spurr,et al.  VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media , 2006 .

[49]  Shobha Kondragunta,et al.  Dust aerosol index (DAI) algorithm for MODIS , 2014 .

[50]  C. O'Dowd,et al.  CALIOP near-real-time backscatter products compared to EARLINET data , 2015 .

[51]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm , 2011 .

[52]  Manfred Wendisch,et al.  SPARTA – Solver for Polarized Atmospheric Radiative Transfer Applications: Introduction and application to Saharan dust fields , 2016 .

[53]  Alan H. Strahler,et al.  Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing , 1992, IEEE Trans. Geosci. Remote. Sens..

[54]  K. F. Boersma,et al.  OMI tropospheric NO 2 air mass factors over South America: effects of biomass burning aerosols , 2015 .

[55]  M. Chin,et al.  Dust optical properties over North Africa and Arabian Peninsula derived from the AERONET dataset , 2011 .

[56]  J. Roujean,et al.  A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data , 1992 .

[57]  A. da Silva,et al.  Multi-sensor cloud retrieval simulator and remote sensing from model parameters - Part 1: Synthetic sensor radiance formulation , 2013 .

[58]  Xiong Liu,et al.  Ozone profile retrievals from the Ozone Monitoring Instrument , 2009 .

[59]  Zhaokai Meng,et al.  Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations , 2010 .

[60]  Philip B. Russell,et al.  ACE-ASIA Regional Climatic and Atmospheric Chemical Effects of Asian Dust and Pollution , 2004 .

[61]  Ping Yang,et al.  Impact of radiatively interactive dust aerosols in the NASA GEOS‐5 climate model: Sensitivity to dust particle shape and refractive index , 2014 .

[62]  Jean-Pierre Blanchet,et al.  Modeling sea-salt aerosols in the atmosphere 1. Model development , 1997 .

[63]  B. Mayer Radiative transfer in the cloudy atmosphere , 2009 .

[64]  D P Edwards,et al.  Tropospheric emissions: monitoring of pollution (TEMPO) , 2012, Optics & Photonics - Optical Engineering + Applications.

[65]  S. Strahan,et al.  The contributions of chemistry and transport to low arctic ozone in March 2011 derived from Aura MLS observations , 2013 .

[66]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables , 2011 .

[67]  Béatrice Josse,et al.  A thermal infrared instrument onboard a geostationary platform for CO and O 3 measurements in the lowermost troposphere: Observing System Simulation Experiments (OSSE) , 2011 .