Kochen–Specker Sets and the Rank-1 Quantum Chromatic Number
暂无分享,去创建一个
[1] J. Pach,et al. Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .
[2] David Avis,et al. A Quantum Protocol to Win the Graph Colouring Game on All Hadamard Graphs , 2006, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..
[3] L. Lovász. Geometric representations of graphs , 2014 .
[4] Leslie Hogben,et al. Orthogonal representations, minimum rank, and graph complements , 2008 .
[5] Stefan Wolf,et al. Pseudo-telepathy, entanglement, and graph colorings , 2002, Proceedings IEEE International Symposium on Information Theory,.
[6] Avi Wigderson,et al. Quantum vs. classical communication and computation , 1998, STOC '98.
[7] László Lovász,et al. On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.
[8] Gilles Brassard,et al. Cost of Exactly Simulating Quantum Entanglement with Classical Communication , 1999 .
[9] Adán Cabello,et al. HOW MANY QUESTIONS DO YOU NEED TO PROVE THAT UNASKED QUESTIONS HAVE NO ANSWERS , 2006 .
[10] Norman D. Megill,et al. INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 38 (2005) 1577–1592 doi:10.1088/0305-4470/38/7/013 , 2022 .
[11] A. Cabello,et al. Bell-Kochen-Specker theorem: A proof with 18 vectors , 1996, quant-ph/9706009.
[12] Gerald Haynes,et al. Orthogonal Vector Coloring , 2010, Electron. J. Comb..
[13] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[14] Simone Severini,et al. On the Quantum Chromatic Number of a Graph , 2007, Electron. J. Comb..
[15] Asher Peres,et al. Two simple proofs of the Kochen-Specker theorem , 1991 .
[16] Alain Tapp,et al. Deterministic quantum non-locality and graph colorings , 2013, Theor. Comput. Sci..
[17] Shaun M. Fallat,et al. The minimum rank of symmetric matrices described by a graph: A survey☆ , 2007 .
[18] J. Bell. On the Problem of Hidden Variables in Quantum Mechanics , 1966 .
[19] Joël Ouaknine,et al. On Searching for Small Kochen-Specker Vector Systems , 2011, WG.
[20] Simone Severini,et al. Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovasz theta function , 2010, ArXiv.
[21] Debbie W. Leung,et al. Improving zero-error classical communication with entanglement , 2009, Physical review letters.
[22] E. Specker,et al. The Problem of Hidden Variables in Quantum Mechanics , 1967 .
[23] Renato Renner,et al. Quantum pseudo-telepathy and the kochen-specker theorem , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[24] Simone Severini,et al. Zero-error communication via quantum channels and a quantum Lovász θ-function , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.