Kochen–Specker Sets and the Rank-1 Quantum Chromatic Number

The quantum chromatic number of a graph G is sandwiched between its chromatic number and its clique number, which are well-known NP-hard quantities. We restrict our attention to the rank-1 quantum chromatic number χ<sub>q</sub><sup>(1)</sup>(G), which upper bounds the quantum chromatic number, but is defined under stronger constraints. We study its relation with the chromatic number χ(G) and the minimum dimension of orthogonal representations ξ(G). It is known that ξ(G) ≤ χ<sub>q</sub><sup>(1)</sup>(G) ≤ χ(G). We answer three open questions about these relations: we give a necessary and sufficient condition to have ξ(G) = χ<sub>q</sub><sup>(1)</sup>(G), we exhibit a class of graphs such that ξ(G) ≤ χ<sub>q</sub><sup>(1)</sup>(G), and we give a necessary and sufficient condition to have χ<sub>q</sub><sup>(1)</sup>(G) ≤ χ(G). Our main tools are Kochen-Specker sets, collections of vectors with a traditionally important role in the study of contextuality of physical theories and, more recently, in the quantification of quantum zero-error capacities. Finally, as a corollary of our results and a result by Avis et al on the quantum chromatic number, we give a family of Kochen-Specker sets of growing dimension.

[1]  J. Pach,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[2]  David Avis,et al.  A Quantum Protocol to Win the Graph Colouring Game on All Hadamard Graphs , 2006, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[3]  L. Lovász Geometric representations of graphs , 2014 .

[4]  Leslie Hogben,et al.  Orthogonal representations, minimum rank, and graph complements , 2008 .

[5]  Stefan Wolf,et al.  Pseudo-telepathy, entanglement, and graph colorings , 2002, Proceedings IEEE International Symposium on Information Theory,.

[6]  Avi Wigderson,et al.  Quantum vs. classical communication and computation , 1998, STOC '98.

[7]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[8]  Gilles Brassard,et al.  Cost of Exactly Simulating Quantum Entanglement with Classical Communication , 1999 .

[9]  Adán Cabello,et al.  HOW MANY QUESTIONS DO YOU NEED TO PROVE THAT UNASKED QUESTIONS HAVE NO ANSWERS , 2006 .

[10]  Norman D. Megill,et al.  INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 38 (2005) 1577–1592 doi:10.1088/0305-4470/38/7/013 , 2022 .

[11]  A. Cabello,et al.  Bell-Kochen-Specker theorem: A proof with 18 vectors , 1996, quant-ph/9706009.

[12]  Gerald Haynes,et al.  Orthogonal Vector Coloring , 2010, Electron. J. Comb..

[13]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[14]  Simone Severini,et al.  On the Quantum Chromatic Number of a Graph , 2007, Electron. J. Comb..

[15]  Asher Peres,et al.  Two simple proofs of the Kochen-Specker theorem , 1991 .

[16]  Alain Tapp,et al.  Deterministic quantum non-locality and graph colorings , 2013, Theor. Comput. Sci..

[17]  Shaun M. Fallat,et al.  The minimum rank of symmetric matrices described by a graph: A survey☆ , 2007 .

[18]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[19]  Joël Ouaknine,et al.  On Searching for Small Kochen-Specker Vector Systems , 2011, WG.

[20]  Simone Severini,et al.  Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovasz theta function , 2010, ArXiv.

[21]  Debbie W. Leung,et al.  Improving zero-error classical communication with entanglement , 2009, Physical review letters.

[22]  E. Specker,et al.  The Problem of Hidden Variables in Quantum Mechanics , 1967 .

[23]  Renato Renner,et al.  Quantum pseudo-telepathy and the kochen-specker theorem , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[24]  Simone Severini,et al.  Zero-error communication via quantum channels and a quantum Lovász θ-function , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.