Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures.

The near-field effects of noble metal nanoparticles can be utilized to enhance the performance of inorganic/organic photosensing devices, such as solar cells and photodetectors. In this work, we developed a well-controlled fabrication strategy to incorporate Au nanostructures into HgTe quantum dot (QD)/ZnO heterojunction photodiode photodetectors. Through an electrostatic immobilization and dry transfer protocol, a layer of Au nanorods with uniform distribution and controllable density is embedded at different depths in the ZnO layer for systematic comparison. More than 80 and 240% increments of average short-circuit current density (Jsc) are observed in the devices with Au nanorods covered by ∼7.5 and ∼4.5 nm ZnO layers, respectively. A periodic finite-difference time-domain (FDTD) simulation model is developed to analyze the depth-dependent property and confirm the mechanism of plasmon-enhanced light absorption in the QD layer. The wavelength-dependent external quantum efficiency spectra suggest that the exciton dissociation and charge extraction efficiencies are also enhanced by the Au nanorods, likely due to local electric field effects. The photodetection performance of the photodiodes is characterized, and the results show that the plasmonic structure improves the overall infrared detectivity of the HgTe QD photodetectors without affecting their temporal response. Our fabrication strategy and theoretical and experimental findings provide useful insight into the applications of metal nanostructures to enhance the performance of organic/inorganic hybrid optoelectronic devices.

[1]  M. Kovalenko,et al.  Colloidal HgTe nanocrystals with widely tunable narrow band gap energies: from telecommunications to molecular vibrations. , 2006, Journal of the American Chemical Society.

[2]  G. Cerullo,et al.  Hot exciton dissociation in polymer solar cells. , 2013, Nature materials.

[3]  Jianfang Wang,et al.  Macroscale colloidal noble metal nanocrystal arrays and their refractive index-based sensing characteristics. , 2014, Small.

[4]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[5]  Jer‐Shing Huang,et al.  The influence of shell thickness of Au@TiO2 core-shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells. , 2013, Nanoscale.

[6]  R. Watanabe,et al.  Metal nanoparticles in a photovoltaic cell: Effect of metallic loss , 2011 .

[7]  D. Qiu,et al.  Mitigation of metal-mediated losses by coating Au nanoparticles with dielectric layer in plasmonic solar cells , 2013 .

[8]  T. Tatsuma,et al.  Enhancement of Dye-Sensitized Photocurrents by Gold Nanoparticles: Effects of Plasmon Coupling , 2013 .

[9]  Weihai Ni,et al.  Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. , 2008, ACS nano.

[10]  Wei Chen,et al.  Porous anodic alumina with continuously manipulated pore/cell size. , 2008, ACS nano.

[11]  Yi Hong,et al.  Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles , 2009 .

[12]  Carl W. Magnuson,et al.  Transfer of CVD-grown monolayer graphene onto arbitrary substrates. , 2011, ACS nano.

[13]  R. Hatton,et al.  Nanoscale geometric electric field enhancement in organic photovoltaics. , 2012, ACS nano.

[14]  M. Dresselhaus,et al.  Direct transfer of graphene onto flexible substrates , 2013, Proceedings of the National Academy of Sciences.

[15]  Shuchi Gupta,et al.  Multiple exciton generation and ultrafast exciton dynamics in HgTe colloidal quantum dots. , 2013, Physical chemistry chemical physics : PCCP.

[16]  Wei E. I. Sha,et al.  Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers , 2011 .

[17]  Xing Wang Zhang,et al.  Plasmonic polymer tandem solar cell. , 2011, ACS nano.

[18]  Kenjiro Miyano,et al.  Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation , 2003 .

[19]  Wei E. I. Sha,et al.  Efficiency Enhancement of Organic Solar Cells by Using Shape‐Dependent Broadband Plasmonic Absorption in Metallic Nanoparticles , 2013 .

[20]  A. Tunc,et al.  Impact of the incorporation of Au nanoparticles into polymer/fullerene solar cells. , 2010, The journal of physical chemistry. A.

[21]  E. Aydil,et al.  Hot-Electron Transfer from Semiconductor Nanocrystals , 2010, Science.

[22]  J. Hupp,et al.  Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[23]  Matthew M. Rex,et al.  Pushing the limits of mercury sensors with gold nanorods. , 2006, Analytical chemistry.

[24]  R. C. Enck,et al.  Onsager mechanism of photogeneration in amorphous selenium , 1975 .

[25]  G. Konstantatos,et al.  Nanostructured materials for photon detection. , 2010, Nature nanotechnology.

[26]  John R. Reynolds,et al.  High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells , 2011, Nature Photonics.

[27]  Peter Nordlander,et al.  Solar vapor generation enabled by nanoparticles. , 2013, ACS nano.

[28]  Dane W. deQuilettes,et al.  Hot Hole Transfer Increasing Polaron Yields in Hybrid Conjugated Polymer/PbS Blends. , 2014, The journal of physical chemistry letters.

[29]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[30]  Vladimir Arkhipov,et al.  Hot Exciton Dissociation in a Conjugated Polymer , 1999 .

[31]  Alexander Eychmüller,et al.  Colloidally Prepared HgTe Nanocrystals with Strong Room‐Temperature Infrared Luminescence , 1999 .

[32]  Charles L. Braun,et al.  Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production , 1984 .

[33]  P. Guyot-Sionnest,et al.  Mid-infrared HgTe colloidal quantum dot photodetectors , 2011 .

[34]  Ulrich Wiesner,et al.  Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. , 2011, Nano letters.

[35]  Alexander O. Govorov,et al.  Generating heat with metal nanoparticles , 2007 .

[36]  Daniel Derkacs,et al.  Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles , 2006 .

[37]  Yao Sun,et al.  Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. , 2013, Nano letters.

[38]  R. Hui,et al.  Surface-passivated plasmonic nano-pyramids for bulk heterojunction solar cell photocurrent enhancement. , 2012, Nanoscale.

[39]  Absorption enhancement in solution processed metal-semiconductor nanocomposites. , 2011, Optics express.

[40]  Stephen V. Kershaw,et al.  Fast, Air‐Stable Infrared Photodetectors based on Spray‐Deposited Aqueous HgTe Quantum Dots , 2014 .

[41]  A. Rogach,et al.  Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. , 2013, Chemical Society reviews.

[42]  M. Kovalenko,et al.  Effect of quantum confinement on higher transitions in HgTe nanocrystals , 2006 .

[43]  Martin A. Green,et al.  Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons , 2010 .

[44]  Harry A. Atwater,et al.  Plasmonic nanoparticle enhanced light absorption in GaAs solar cells , 2008 .

[45]  Brahim Lounis,et al.  Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers , 2002, Science.

[46]  David R. Smith,et al.  Shape effects in plasmon resonance of individual colloidal silver nanoparticles , 2002 .