RANS/PDF and LES/FDF for prediction of turbulent premixed flames

Probability density function (PDF) and filtered density function (FDF)methodologies are developed and implemented, respectively, forReynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) ofturbulent premixed flames. RANS predictions are made of a lean premixedbluff-body flame via the joint velocity-scalar-frequency PDF model. LES of apremixed Bunsen-burner flame is conducted via the scalar FDF methodology. Bothsimulations employ finite rate kinetics via a reduced methane chemistrymechanism to account for combustion. Prediction results are compared withexperimental data, and are shown to capture some of the intricate physics ofturbulent premixed combustion.

[1]  Stefan Heinz,et al.  On Fokker–Planck Equations for Turbulent Reacting Flows. Part 2. Filter Density Function for Large Eddy Simulation , 2003 .

[2]  Thomas D. Dreeben,et al.  Probability density function/Monte Carlo simulation of near-wall turbulent flows , 1998, Journal of Fluid Mechanics.

[3]  Thomas M. Eidson,et al.  Numerical simulation of the turbulent Rayleigh–Bénard problem using subgrid modelling , 1985, Journal of Fluid Mechanics.

[4]  Michele Ciofalo,et al.  Large-Eddy Simulation: A Critical Survey of Models and Applications , 1994 .

[5]  V. Canuto,et al.  Large Eddy simulation of turbulence: A subgrid scale model including shear, vorticity, rotation, and buoyancy , 1994 .

[6]  S. James,et al.  Large scale simulations of two-dimensional nonpremixed methane jet flames , 2000 .

[7]  C. Law,et al.  Towards accommodating realistic fuel chemistry in large-scale computations , 2008 .

[8]  Ionut Danaila,et al.  Direct numerical simulation of bifurcating jets , 2000 .

[9]  Sean C. Garrick,et al.  Large Eddy Simulation of Scalar Transport in a Turbulent Jet Flow , 1999 .

[10]  George Kosály,et al.  Differential diffusion in turbulent reacting flows , 1998 .

[11]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[12]  Jinchao Xu,et al.  Assessment of Numerical Accuracy of PDF/Monte Carlo Methods for Turbulent Reacting Flows , 1999 .

[13]  Katepalli R. Sreenivasan,et al.  Schmidt number effects on turbulent transport with uniform mean scalar gradient , 2002 .

[14]  R. Schefer,et al.  OH-PLIF Measurements of High-Pressure, Hydrogen Augmented Premixed Flames in the SimVal Combustor , 2007 .

[15]  S. Pope The probability approach to the modelling of turbulent reacting flows , 1976 .

[16]  Randall Gemmen,et al.  Issues for low-emission, fuel-flexible power systems , 2001 .

[17]  R. Lindstedt,et al.  Joint scalar probability density function modeling of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry , 2000 .

[18]  Asghar Afshari,et al.  Large-Eddy Simulations of Turbulent Flows in an Axisymmetric Dump Combustor , 2008 .

[19]  Luc Vervisch,et al.  Subgrid-Scale Turbulent Micromixing: Dynamic Approach , 1998 .

[20]  S. B. Pope,et al.  Application of PDF Modeling to Swirling and Nonswirling Turbulent Jets , 1999 .

[21]  Heinz Pitsch,et al.  Hybrid large-eddy simulation/Lagrangian filtered-density-function approach for simulating turbulent combustion , 2005 .

[22]  J Mathew,et al.  Filtered density function for large eddy simulation of turbulent reacting flows , 2008 .

[23]  J.-Y. Chen,et al.  Selecting the optimum quasi-steady-state species for reduced chemical kinetic mechanisms using a genetic algorithm , 2006 .

[24]  Stephen B. Pope,et al.  Computations of turbulent combustion: Progress and challenges , 1991 .

[25]  Rodney O. Fox,et al.  Computational Models for Turbulent Reacting Flows: References , 2003 .

[26]  Tianfeng Lu,et al.  Linear time reduction of large kinetic mechanisms with directed relation graph: N-Heptane and iso-octane , 2006 .

[27]  G. D. Byrne,et al.  VODE: a variable-coefficient ODE solver , 1989 .

[28]  David H. Rudy,et al.  A nonreflecting outflow boundary condition for subsonic navier-stokes calculations , 1980 .

[29]  Stephen B. Pope,et al.  A particle formulation for treating differential diffusion in filtered density function methods , 2006, J. Comput. Phys..

[30]  Stephen B. Pope,et al.  The hybrid method for the PDF equations of turbulent reactive flows: consistency conditions and correction algorithms , 2001 .

[31]  Stephen B. Pope,et al.  Filtered mass density function for large-eddy simulation of turbulent reacting flows , 1999, Journal of Fluid Mechanics.

[32]  Monte Carlo simulation of radiative heat transfer and turbulence interactions in methane/air jet flames , 2008 .

[33]  Stephen B. Pope,et al.  Lagrangian investigation of local extinction, re-ignition and auto-ignition in turbulent flames , 2008 .

[34]  Ajay K. Agrawal,et al.  Combustion of hydrogen-enriched methane in a lean premixed swirl-stabilized burner , 2002 .

[35]  J. Rotta,et al.  Statistische Theorie nichthomogener Turbulenz , 1951 .

[36]  Stefan Heinz,et al.  On Fokker–Planck Equations for Turbulent Reacting Flows. Part 1. Probability Density Function for Reynolds-Averaged Navier–Stokes Equations , 2003 .

[37]  R. Barlow,et al.  Effects of turbulence on species mass fractions in methane/air jet flames , 1998 .

[38]  T. Lundgren Model Equation for Nonhomogeneous Turbulence , 1969 .

[39]  Stephen B. Pope,et al.  PDF calculations of turbulent nonpremixed flames with local extinction , 2000 .

[40]  S. Pope,et al.  A Consistent Hybrid Finite-Volume / Particle Method for the PDF Equations of Turbulent Reactive Flows , 2001 .

[41]  Norbert Peters,et al.  A spectral closure for premixed turbulent combustion in the flamelet regime , 1992, Journal of Fluid Mechanics.

[42]  P. Moin,et al.  The basic equations for the large eddy simulation of turbulent flows in complex geometry , 1995 .

[43]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[44]  B. Geurts,et al.  Realizability conditions for the turbulent stress tensor in large-eddy simulation , 1994, Journal of Fluid Mechanics.

[45]  Ulrich Maas,et al.  Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , 1992 .

[46]  M. Herrmann Numerical simulation of turbulent Bunsen flames with a level set flamelet model , 2006 .

[47]  Stephen B. Pope,et al.  Probability density function calculations of local extinction and no production in piloted-jet turbulent methane/air flames , 2000 .

[48]  Chenning Tong,et al.  Experimental investigation of scalar-scalar-dissipation filtered joint density function and its transport equation , 2002 .

[49]  Chenning Tong,et al.  Measurements of conserved scalar filtered density function in a turbulent jet , 2001 .

[50]  J. Ferziger,et al.  Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows , 1983 .

[51]  Jay P. Gore,et al.  An evaluation of flame surface density models for turbulent premixed jet flames , 1999 .

[52]  Stochastic Simulation of NO Formation in Lean Premixed Methane Flames , 2000 .

[53]  Jose C. F. Pereira,et al.  Large Eddy Simulation (2D) of a Reacting Plane Mixing Layer Using Filtered Density Function Closure , 2000 .

[54]  A. Masri,et al.  PROBABILITY DENSITY FUNCTION COMPUTATIONS OF A STRONGLY SWIRLING NONPREMIXED FLAME STABILIZED ON A NEW BURNER , 2000 .

[55]  Konstantinos Gkagkas,et al.  Transported PDF modelling with detailed chemistry of pre- and auto-ignition in CH4/air mixtures , 2007 .

[56]  A. Masri,et al.  Pdf calculations of turbulent lifted flames of H2/N2 fuel issuing into a vitiated co-flow , 2004 .

[57]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[58]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[59]  Thomas H. Fletcher,et al.  Evaluation of CH4/NOx Reduced Mechanisms Used for Modeling Lean Premixed Turbulent Combustion of Natural Gas , 1998 .

[60]  Joint scalar transported PDF modeling of nonpiloted turbulent diffusion flames , 2005 .

[61]  PDF MODELING OF CO AND NO FORMATION IN LEAN PREMIXED METHANE FLAMES , 2004 .

[62]  Norberto Fueyo,et al.  An economical strategy for storage of chemical kinetics: Fitting in situ adaptive tabulation with artificial neural networks , 2000 .

[63]  Bruno Sportisse,et al.  Reduction of Multiphase Atmospheric Chemistry , 2003 .

[64]  P. Givi Model-free simulations of turbulent reactive flows , 1989 .

[65]  T. Poinsot,et al.  Theoretical and numerical combustion , 2001 .

[66]  A. Kerstein,et al.  SCALING PROPERTIES OF DIFFERENTIAL MOLECULAR DIFFUSION EFFECTS IN TURBULENCE , 1995 .

[67]  Chenning Tong,et al.  Conditionally filtered scalar dissipation, scalar diffusion, and velocity in a turbulent jet , 2002 .

[68]  R. P. Lindstedt,et al.  Transported PDF modeling of high-Reynolds-number premixed turbulent flames , 2006 .

[69]  H. Pitsch,et al.  Large-eddy simulation of premixed turbulent combustion using a level-set approach , 2002 .

[70]  Stephen B. Pope,et al.  Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation , 1997 .

[71]  S. Pope Lagrangian PDF Methods for Turbulent Flows , 1994 .

[72]  PDF modeling of lean premixed combustion using in situ tabulated chemistry , 1999 .

[73]  Stephen B. Pope,et al.  PDF modeling of a bluff-body stabilized turbulent flame , 2003 .

[74]  Norberto Fueyo,et al.  A single-step time-integrator of a methane-air chemical system using artificial neural networks , 1999 .

[75]  R. Barlow,et al.  Rayleigh/Raman/LIF measurements in a turbulent lean premixed combustor , 1995 .

[76]  Stephen B. Pope,et al.  Experimental study of velocity filtered joint density function for large eddy simulation , 2004 .

[77]  Stephen B. Pope,et al.  Velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows , 2007 .

[78]  Stephen B. Pope,et al.  Velocity-scalar filtered density function for large eddy simulation of turbulent flows , 2003 .

[79]  T. Poinsot Boundary conditions for direct simulations of compressible viscous flows , 1992 .

[80]  Stephen B. Pope,et al.  The influence of chemical mechanisms on PDF calculations of nonpremixed piloted jet flames , 2005 .

[81]  Sanjay M. Correa,et al.  Monte Carlo Probability Density Function Method for Gas Turbine Combustor Flowfield Predictions , 1997 .

[82]  N. Bershad,et al.  Random differential equations in science and engineering , 1975, Proceedings of the IEEE.

[83]  John Waldron,et al.  The Langevin Equation , 2004 .

[84]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[85]  Vincent McDonell,et al.  Impact of Ethane, Propane, and Diluent Content in Natural Gas on the Performance of a Commercial Microturbine Generator , 2005 .

[86]  M. Lesieur,et al.  New Trends in Large-Eddy Simulations of Turbulence , 1996 .

[87]  S. Candel,et al.  Applications of direct numerical simulation to premixed turbulent combustion , 1995 .

[88]  Ajay K. Agrawal,et al.  Influence of Hydrogen Addition on Flow Structure in Confined Swirling Methane Flame , 2005 .

[89]  Douglas L. Straub,et al.  Optically Accessible Pressurized Research Combustor for Computational Fluid Dynamics Model Validation , 2006 .

[90]  P. Kloeden,et al.  Numerical Solution of Sde Through Computer Experiments , 1993 .

[91]  M. H. Carpenter,et al.  A high-order compact numerical algorithm for supersonic flows , 1990 .

[92]  Peyman Givi,et al.  Filtered Density Function for Subgrid Scale Modeling of Turbulent Combustion , 2006 .

[93]  Robert L. Gordon,et al.  A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow , 2007 .

[94]  R. Barlow,et al.  Laser Raman scattering measurements of differential molecular diffusion in nonreacting turbulent jets of H2/CO2 mixing with air , 1995 .

[95]  Bassam B. Dally,et al.  Instantaneous and Mean Compositional Structure of Bluff-Body Stabilized Nonpremixed Flames , 1998 .

[96]  P. Lindstedt Modeling of the chemical complexities of flames , 1998 .

[97]  Tianfeng Lu,et al.  Complex CSP for Chemistry Reduction and Analysis , 2001 .

[98]  Elaine S. Oran,et al.  Numerical Simulation of Reactive Flow , 1987 .

[99]  J. Ontko,et al.  Investigation of the effects of hydrogen addition on lean extinction in a swirl stabilized combustor , 2007 .

[100]  S. Pope,et al.  Calculations of bluff-body stabilized flames using a joint probability density function model with detailed chemistry , 2005 .

[101]  M. Grigoriu Applied Non-Gaussian Processes , 1995 .

[102]  Stephen B. Pope,et al.  Transport equation for the joint probability density function of velocity and scalars in turbulent flow , 1981 .

[103]  J.-Y. Chen,et al.  A self-organizing-map approach to chemistry representation in combustion applications , 2000 .

[104]  Peyman Givi,et al.  Large Eddy Simulation of Heat and Mass Transport in Turbulent Flows , 2009 .

[105]  D. Williams STOCHASTIC DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS , 1976 .

[106]  T. Lundgren Distribution Functions in the Statistical Theory of Turbulence , 1967 .

[107]  E. O'brien,et al.  The probability density function (pdf) approach to reacting turbulent flows , 1980 .

[108]  C. Law,et al.  A directed relation graph method for mechanism reduction , 2005 .

[109]  R. Fox,et al.  Hybrid finite-volume/transported PDF simulations of a partially premixed methane–air flame , 2004 .

[110]  A. Masri,et al.  Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations , 2005 .

[111]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[112]  Joint scalar-velocity pdf modelling of finite rate chemistry in a scalar mixing layer , 1998 .

[113]  C. Dopazo,et al.  Statistical Treatment of Non-Isothermal Chemical Reactions in Turbulence , 1976 .

[114]  T. Poinsot,et al.  DIRECT NUMERICAL SIMULATION OF NON-PREMIXED TURBULENT FLAMES , 1998 .

[115]  Peyman Givi,et al.  Developments in Formulation and Application of the Filtered Density Function , 2006 .

[116]  K. Vahala Handbook of stochastic methods for physics, chemistry and the natural sciences , 1986, IEEE Journal of Quantum Electronics.

[117]  S. Pope PDF methods for turbulent reactive flows , 1985 .

[118]  Norbert Peters,et al.  The detailed flame structure of highly stretched turbulent premixed methane-air flames , 1996 .

[119]  F. Mashayek,et al.  Differential diffusion in binary scalar mixing and reaction , 1997 .

[120]  Chong M. Cha,et al.  A subgrid-scale mixing model for large-eddy simulations of turbulent reacting flows using the filtered density function , 2003 .

[121]  S. Pope Advances in PDF Methods for Turbulent Reactive Flows , 2004 .

[122]  Stephen B. Pope,et al.  Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia Flame D) , 2004 .

[123]  Stephen B. Pope,et al.  Advances in PDF modeling for inhomogeneous turbulent flows , 1998 .

[124]  Paul E. DesJardin,et al.  A filtered mass density function approach for modeling separated two-phase flows for LES I: Mathematical formulation , 2006 .

[125]  N. Peters The turbulent burning velocity for large-scale and small-scale turbulence , 1999, Journal of Fluid Mechanics.

[126]  S. Pope,et al.  Velocity filtered density function for large eddy simulation of turbulent flows , 2000 .

[127]  Steven M. Cannon,et al.  Modeling of lean premixed combustion in stationary gas turbines , 1999 .