A low-order discontinuous Petrov–Galerkin method for the Stokes equations

This paper introduces a low-order discontinuous Petrov-Galerkin (dPG) finite element method (FEM) for the Stokes equations. The ultra-weak formulation utilizes piecewise constant and affine ansatz functions and piecewise affine and discontinuous lowest-order Raviart–Thomas test search functions. This low-order discretization for the Stokes equations allows for a direct proof of the discrete inf-sup condition with explicit constants. The general framework of Carstensen et al. (SIAM J Numer Anal 52(3):1335–1353, 2014) then implies a complete a priori and a posteriori error analysis of the dPG FEM in the natural norms. Numerical experiments investigate the performance of the method and underline its quasi-optimal convergence.

[1]  D. Arnold,et al.  A uniformly accurate finite element method for the Reissner-Mindlin plate , 1989 .

[2]  Nathan V. Roberts,et al.  The DPG method for the Stokes problem , 2014, Comput. Math. Appl..

[3]  Leszek Demkowicz,et al.  A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions , 2011 .

[4]  Carsten Carstensen,et al.  Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem , 2013, J. Comput. Appl. Math..

[5]  Carsten Carstensen,et al.  Low-Order Discontinuous Petrov-Galerkin Finite Element Methods for Linear Elasticity , 2016, SIAM J. Numer. Anal..

[6]  Carsten Carstensen,et al.  Optimal adaptive nonconforming FEM for the Stokes problem , 2013, Numerische Mathematik.

[7]  Carsten Carstensen,et al.  Computational Survey on A Posteriori Error Estimators for the Crouzeix–Raviart Nonconforming Finite Element Method for the Stokes Problem , 2014, Comput. Methods Appl. Math..

[8]  Carsten Carstensen,et al.  Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.

[9]  Carsten Carstensen,et al.  An adaptive least-squares FEM for the Stokes equations with optimal convergence rates , 2017, Numerische Mathematik.

[10]  Leszek F. Demkowicz,et al.  Analysis of the DPG Method for the Poisson Equation , 2011, SIAM J. Numer. Anal..

[11]  Leszek Demkowicz,et al.  A Class of Discontinuous Petrov–Galerkin Methods. Part I: The Transport Equation , 2010 .

[12]  I. Babuska Error-bounds for finite element method , 1971 .

[13]  Weifeng Qiu,et al.  An analysis of the practical DPG method , 2011, Math. Comput..

[14]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[15]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[16]  Carsten Carstensen,et al.  A Posteriori Error Control for DPG Methods , 2014, SIAM J. Numer. Anal..

[17]  Panayot S. Vassilevski,et al.  Mixed finite element methods for incompressible flow: Stationary Stokes equations , 2010 .

[18]  Carsten Carstensen,et al.  Guaranteed lower eigenvalue bounds for the biharmonic equation , 2014, Numerische Mathematik.

[19]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[20]  Tosio Kato Estimation of Iterated Matrices, with application to the von Neumann condition , 1960 .

[21]  Carsten Carstensen,et al.  Breaking spaces and forms for the DPG method and applications including Maxwell equations , 2015, Comput. Math. Appl..

[22]  Carsten Carstensen,et al.  Low-order dPG-FEM for an elliptic PDE , 2014, Comput. Math. Appl..

[23]  Carsten Carstensen,et al.  Remarks around 50 lines of Matlab: short finite element implementation , 1999, Numerical Algorithms.

[24]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[25]  Christian Merdon,et al.  Aspects of guaranteed error control in computations for partial differential equations , 2013 .