Quantitative steganalysis using rich models

In this paper, we propose a regression framework for steganalysis of digital images that utilizes the recently proposed rich models – high-dimensional statistical image descriptors that have been shown to substantially improve classical (binary) steganalysis. Our proposed system is based on gradient boosting and utilizes a steganalysis-specific variant of regression trees as base learners. The conducted experiments confirm that the proposed system outperforms prior quantitative steganalysis (both structural and feature-based) across a wide range of steganographic schemes: HUGO, LSB replacement, nsF5, BCHopt, and MME3.

[1]  Andrew D. Ker,et al.  Going from small to large data in steganalysis , 2012, Other Conferences.

[2]  Tomás Pevný,et al.  Steganalysis by subtractive pixel adjacency matrix , 2010, IEEE Trans. Inf. Forensics Secur..

[3]  Jessica J. Fridrich,et al.  Rich Models for Steganalysis of Digital Images , 2012, IEEE Transactions on Information Forensics and Security.

[4]  Jessica J. Fridrich,et al.  Steganalysis of JPEG images using rich models , 2012, Other Conferences.

[5]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[6]  Tomás Pevný,et al.  From Blind to Quantitative Steganalysis , 2009, IEEE Transactions on Information Forensics and Security.

[7]  Jessica J. Fridrich,et al.  Ensemble Classifiers for Steganalysis of Digital Media , 2012, IEEE Transactions on Information Forensics and Security.

[8]  Sorina Dumitrescu,et al.  Detection of LSB steganography via sample pair analysis , 2002, IEEE Trans. Signal Process..

[9]  Vojtech Holub,et al.  On dangers of overtraining steganography to incomplete cover model , 2011, MM&Sec '11.

[10]  Leo Breiman,et al.  Stacked regressions , 2004, Machine Learning.

[11]  Jessica J. Fridrich,et al.  Detecting LSB Steganography in Color and Gray-Scale Images , 2001, IEEE Multim..

[12]  Jessica J. Fridrich,et al.  Calibration revisited , 2009, MM&Sec '09.

[13]  Jessica J. Fridrich,et al.  Steganalysis in high dimensions: fusing classifiers built on random subspaces , 2011, Electronic Imaging.

[14]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[15]  Tomás Pevný,et al.  Using High-Dimensional Image Models to Perform Highly Undetectable Steganography , 2010, Information Hiding.

[16]  Jessica J. Fridrich,et al.  On estimation of secret message length in LSB steganography in spatial domain , 2004, IS&T/SPIE Electronic Imaging.

[17]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[18]  Hyoung Joong Kim,et al.  Less detectable JPEG steganography method based on heuristic optimization and BCH syndrome coding , 2009, MM&Sec '09.

[19]  Tomás Pevný,et al.  Statistically undetectable jpeg steganography: dead ends challenges, and opportunities , 2007, MM&Sec.

[20]  Tomás Pevný,et al.  "Break Our Steganographic System": The Ins and Outs of Organizing BOSS , 2011, Information Hiding.

[21]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[22]  Fatih Kurugollu,et al.  A New Methodology in Steganalysis: Breaking Highly Undetectable Steganograpy (HUGO) , 2011, Information Hiding.

[23]  J. Copas Regression, Prediction and Shrinkage , 1983 .

[24]  Jessica J. Fridrich,et al.  Steganalysis of LSB Replacement Using Parity-Aware Features , 2012, Information Hiding.

[25]  Dana S. Richards,et al.  Modified Matrix Encoding Technique for Minimal Distortion Steganography , 2006, Information Hiding.

[26]  Rainer Böhme,et al.  Revisiting weighted stego-image steganalysis , 2008, Electronic Imaging.

[27]  Tomás Pevný,et al.  Steganalysis by Subtractive Pixel Adjacency Matrix , 2009, IEEE Transactions on Information Forensics and Security.