Hybrid plasmonic nanostructures based on controlled integration of MoS2 flakes on metallic nanoholes.

Here, we propose an easy and robust strategy for the versatile preparation of hybrid plasmonic nanopores by means of controlled deposition of single flakes of MoS2 directly on top of metallic holes. The device is realized on silicon nitride membranes and can be further refined by TEM or FIB milling to achieve the passing of molecules or nanometric particles through a pore. Importantly, we show that the plasmonic enhancement provided by the nanohole is strongly accumulated in the 2D nanopore, thus representing an ideal system for single-molecule sensing and sequencing in a flow-through configuration. Here, we also demonstrate that the prepared 2D material can be decorated with metallic nanoparticles that can couple their resonance with the nanopore resonance to further enhance the electromagnetic field confinement at the nanoscale level. This method can be applied to any gold nanopore with a high level of reproducibility and parallelization; hence, it can pave the way to the next generation of solid-state nanopores with plasmonic functionalities. Moreover, the controlled/ordered integration of 2D materials on plasmonic nanostructures opens a pathway towards new investigation of the following: enhanced light emission; strong coupling from plasmonic hybrid structures; hot electron generation; and sensors in general based on 2D materials.

[1]  Yifan Sun,et al.  Fast and Efficient Preparation of Exfoliated 2H MoS2 Nanosheets by Sonication-Assisted Lithium Intercalation and Infrared Laser-Induced 1T to 2H Phase Reversion. , 2015, Nano letters.

[2]  K Dinakaran,et al.  Sensitive fluorescence detection of mercury(ii) in aqueous solution by the fluorescence quenching effect of MoS2 with DNA functionalized carbon dots. , 2016, The Analyst.

[3]  J. Chao,et al.  Creating SERS hot spots on MoS(2) nanosheets with in situ grown gold nanoparticles. , 2014, ACS applied materials & interfaces.

[4]  Mario Malerba,et al.  3D hollow nanostructures as building blocks for multifunctional plasmonics. , 2013, Nano letters.

[5]  E. Benavente,et al.  Intercalation chemistry of molybdenum disulfide , 2002 .

[6]  Paolo Vavassori,et al.  Site-Selective Integration of MoS2 Flakes on Nanopores by Means of Electrophoretic Deposition , 2018, ACS omega.

[7]  G. Eda,et al.  Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction. , 2013, Nano letters.

[8]  A. Tramontano,et al.  Multistep current signal in protein translocation through graphene nanopores. , 2015, The journal of physical chemistry. B.

[9]  M. Pumera,et al.  Functional Nanosheet Synthons by Covalent Modification of Transition-Metal Dichalcogenides , 2017 .

[10]  Qiaoqiang Gan,et al.  MoS2 monolayers on nanocavities: enhancement in light–matter interaction , 2016 .

[11]  Luke P. Lee,et al.  Graphene nanopore with a self-integrated optical antenna. , 2014, Nano letters.

[12]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[13]  Wei Chen,et al.  Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor , 2013 .

[14]  Sefaattin Tongay,et al.  Enhanced light emission from large-area monolayer MoS₂ using plasmonic nanodisc arrays. , 2015, Nano letters.

[15]  Jing Kong,et al.  Tailored emission spectrum of 2D semiconductors using plasmonic nanocavities , 2017 .

[16]  M. Chhowalla,et al.  Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. , 2015, Nature nanotechnology.

[17]  Bo Liu,et al.  High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide , 2014, Nature Communications.

[18]  Meni Wanunu,et al.  Challenges in DNA motion control and sequence readout using nanopore devices , 2015, Nanotechnology.

[20]  Francesco De Angelis,et al.  Beaming of Helical Light from Plasmonic Vortices via Adiabatically Tapered Nanotip , 2016, Nano letters.

[21]  R. Wallace,et al.  Surface Defects on Natural MoS2. , 2015, ACS applied materials & interfaces.

[22]  Dumitru Dumcenco,et al.  Identification of single nucleotides in MoS2 nanopores. , 2015, Nature nanotechnology.

[23]  Aleksei Aksimentiev,et al.  Graphene Nanopores for Protein Sequencing , 2016, Advanced functional materials.

[24]  L. Dai,et al.  Measuring the Refractive Index of Highly Crystalline Monolayer MoS2 with High Confidence , 2015, Scientific Reports.

[25]  Jin Yu,et al.  Enhanced Electrocatalytic Properties of Transition-Metal Dichalcogenides Sheets by Spontaneous Gold Nanoparticle Decoration. , 2013, The journal of physical chemistry letters.

[26]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[27]  B. P. Singh,et al.  Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling , 2017, Scientific Reports.

[28]  Limin Jin,et al.  Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals , 2013, Scientific Reports.

[29]  Ke Liu,et al.  Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. , 2014, ACS nano.

[30]  A. Meller,et al.  Single-Molecule DNA Methylation Quantification Using Electro-optical Sensing in Solid-State Nanopores. , 2016, ACS nano.

[31]  Bumsu Lee,et al.  Strong Exciton-Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice. , 2015, Nano letters.

[32]  Lei Zhang,et al.  Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures , 2016, Nature Communications.

[33]  Vinayak P. Dravid,et al.  Valley-polarized exciton–polaritons in a monolayer semiconductor , 2017, Nature Photonics.

[34]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[35]  Yimin Kang,et al.  Plasmonic hot electron enhanced MoS2 photocatalysis in hydrogen evolution. , 2015, Nanoscale.

[36]  N. Aluru,et al.  DNA base detection using a single-layer MoS2. , 2014, ACS nano.

[37]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[38]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[39]  N. Aluru,et al.  Single-layer MoS2 nanopores as nanopower generators , 2016, Nature.

[40]  James Hone,et al.  Investigation of Nonlinear Elastic Behavior of Two-Dimensional Molybdenum Disulfide , 2012 .

[41]  Kebin Shi,et al.  Ultrafast Plasmonic Hot Electron Transfer in Au Nanoantenna/MoS2 Heterostructures , 2016 .

[42]  G. Schneider,et al.  Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond , 2015, Chemical Society reviews.

[43]  Laura Beth Fulton,et al.  Monolayer WS2 Nanopores for DNA Translocation with Light-Adjustable Sizes. , 2017, ACS nano.

[44]  Cees Dekker,et al.  Graphene nanodevices for DNA sequencing. , 2016, Nature nanotechnology.

[45]  Yimin Kang,et al.  Plasmonic Hot Electron Induced Structural Phase Transition in a MoS2 Monolayer , 2014, Advanced materials.

[46]  A. Meller,et al.  Light‐Enhancing Plasmonic‐Nanopore Biosensor for Superior Single‐Molecule Detection , 2017, Advanced materials.

[47]  Xin Chen,et al.  Functionalization of Two‐Dimensional Transition‐Metal Dichalcogenides , 2016, Advanced materials.

[48]  M. Wanunu,et al.  Direct and Scalable Deposition of Atomically Thin Low-Noise MoS2 Membranes on Apertures. , 2015, ACS nano.

[49]  G. Rubio‐Bollinger,et al.  Optical identification of atomically thin dichalcogenide crystals , 2010, 1003.2602.

[50]  Carsten Rockstuhl,et al.  Manipulation of photoluminescence of two-dimensional MoSe2 by gold nanoantennas , 2016, Scientific Reports.

[51]  Zhiping Weng,et al.  Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. , 2010, Nano letters.

[52]  Hui Li,et al.  Disposable MoS2-Arrayed MALDI MS Chip for High-Throughput and Rapid Quantification of Sulfonamides in Multiple Real Samples. , 2018, ACS sensors.

[53]  K. Schulten,et al.  Intrinsic Stepwise Translocation of Stretched ssDNA in Graphene Nanopores , 2015, Nano letters.

[54]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[55]  B. Chakraborty,et al.  Layer-dependent resonant Raman scattering of a few layer MoS2 , 2013 .

[56]  Bengkang Tay,et al.  Tailoring MoS2 Exciton-Plasmon Interaction by Optical Spin-Orbit Coupling. , 2017, ACS nano.

[57]  Li-Yu Daisy Liu,et al.  Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom. , 2015, Nano letters.

[58]  Noah D Bronstein,et al.  Balancing the Hydrogen Evolution Reaction, Surface Energetics, and Stability of Metallic MoS2 Nanosheets via Covalent Functionalization. , 2018, Journal of the American Chemical Society.

[59]  T. Heinz,et al.  Probing the Dynamics of the Metallic-to-Semiconducting Structural Phase Transformation in MoS2 Crystals. , 2015, Nano letters.

[60]  Zongpeng Wang,et al.  Well-oriented epitaxial gold nanotriangles and bowties on MoS2 for surface-enhanced Raman scattering. , 2015, Nanoscale.

[61]  Mrinmoy De,et al.  Ligand conjugation of chemically exfoliated MoS2. , 2013, Journal of the American Chemical Society.

[62]  Takeshi Fujita,et al.  Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. , 2015, Nature chemistry.

[63]  Chunhai Fan,et al.  Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. , 2013, Journal of the American Chemical Society.

[64]  Wei Lu,et al.  Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays. , 2015, Small.