On Some Permutation Binomials of the Form $x^{\frac{2^n-1}{k}+1} +ax$ over $\mathbb{F}_{2^n}$ : Existence and Count

Based on a criterion of permutation polynomials of the form $x^rf(x^{\frac{q-1}{m}})$ by Wan and Lidl (1991) and some very elementary techniques we show existence of permutation binomials of the following forms 1 $x(x^{\frac{2^n-1}{3}}+a) \in \mathbb{F}_{2^n}[x]$, for n>4 2 $x^{\frac{2^{2n}-1}{2^{n}-1} + 1}+ax = x^{2^n+2} + ax \in \mathbb{F}_{2^{2n}}[x]$, for n≥3. In (i), we extend a result of Carlitz (1962) for even characteristic. Moreover we present the count of such permutation binomials when a is in a certain subfield of $\mathbb{F}_{2^n}$. In (ii), we reprove, using much simpler technique, a recent result of Charpin and Kyureghyan (2008) and give the number of permutation binomials of this form. Finally, we discuss some cryptographic relevance of these results.

[1]  Ariane M. Masuda,et al.  Permutation binomials over finite fields , 2007, 0707.1108.

[2]  L. Carlitz,et al.  Some theorems on permutation polynomials , 1962 .

[3]  Yann Laigle-Chapuy,et al.  Permutation polynomials and applications to coding theory , 2007, Finite Fields Their Appl..

[4]  Sylvie Dubuc,et al.  Characterization of Linear Structures , 2001, Des. Codes Cryptogr..

[5]  Pascale Charpin,et al.  Polynomials With Linear Structure and Maiorana-McFarland Construction , 2011, IEEE Trans. Inf. Theory.

[6]  Leonard Carlitz,et al.  The number of solutions of a special system of equations in a finite field , 1966 .

[7]  Jan-Hendrik Evertse,et al.  Linear Structures in Blockciphers , 1987, EUROCRYPT.

[8]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[9]  Pascale Charpin,et al.  Cubic Monomial Bent Functions: A Subclass of M , 2008, SIAM J. Discret. Math..

[10]  Tor Helleseth,et al.  Some results about the cross-correlation function between two maximal linear sequences , 1976, Discret. Math..

[11]  Rudolf Lide,et al.  Finite fields , 1983 .

[12]  Rudolf Lidl,et al.  Permutation polynomials of the formxrf(xq−1)/d) and their group structure , 1991 .

[13]  Anthony B. Evans Orthomorphism graphs of groups , 1992 .

[14]  David Chaum,et al.  Advances in Cryptology — EUROCRYPT’ 87 , 2000, Lecture Notes in Computer Science.

[15]  H. Niederreiter,et al.  Complete mappings of finite fields , 1982, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[16]  Harald Niederreiter,et al.  Cyclotomic R-orthomorphisms of finite fields , 2005, Discret. Math..