Blow Up Criterion for Compressible Nematic Liquid Crystal Flows in Dimension Three

In this paper, we consider the short time strong solution to a simplified hydrodynamic flow modeling compressible, nematic liquid crystal materials in dimension three. We establish a criterion for possible breakdown of such solutions at a finite time in terms of the temporal integral of both the maximum norm of the deformation tensor of the velocity gradient and the square of the maximum norm of the gradient of a liquid crystal director field.

[1]  Jing Li,et al.  Serrin-Type Criterion for the Three-Dimensional Viscous Compressible Flows , 2010, SIAM J. Math. Anal..

[2]  David Kinderlehrer,et al.  Existence and partial regularity of static liquid crystal configurations , 1986 .

[3]  Xian-gao Liu,et al.  A blow-up criterion for the compressible liquid crystals system , 2010, 1011.4399.

[4]  Yu‐ming Chu,et al.  STRONG SOLUTIONS TO THE COMPRESSIBLE LIQUID CRYSTAL SYSTEM , 2012 .

[5]  Changyou Wang,et al.  Heat Flow of Harmonic Maps Whose Gradients Belong to $$L^{n}_{x}L^{\infty}_{t}$$ , 2008 .

[6]  F. M. Leslie Some constitutive equations for liquid crystals , 1968 .

[7]  Hi Jun Choe,et al.  Unique solvability of the initial boundary value problems for compressible viscous fluids , 2004 .

[8]  Eduard Feireisl,et al.  Dynamics of Viscous Compressible Fluids , 2004 .

[9]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[10]  Pierre-Louis Lions,et al.  Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models , 1998 .

[11]  F. Lin,et al.  Nonparabolic dissipative systems modeling the flow of liquid crystals , 1995 .

[12]  A. Chambolle,et al.  Crack Initiation in Brittle Materials , 2008 .

[13]  Roger Temam,et al.  Steady-state Navier–Stokes equations , 2001 .

[14]  Haim Brezis,et al.  Remarks on the Euler equation , 1974 .

[15]  Gui-Qiang G. Chen,et al.  A Study of the Navier-Stokes Equations with the Kinematic and Navier Boundary Conditions , 2008, 0901.0147.

[16]  W. Wahl Estimating ∇u by div u and curl u , 1992 .

[17]  Hi Jun Choe,et al.  Strong solutions of the Navier-Stokes equations for isentropic compressible fluids , 2003 .

[18]  Chao Wang,et al.  A Beale-Kato-Majda Blow-up criterion for the 3-D compressible Navier-Stokes equations , 2010, 1001.1247.

[19]  Zhouping Xin,et al.  Blowup Criterion for Viscous Baratropic Flows with Vacuum States , 2010, 1004.5469.

[20]  J. Ericksen,et al.  Hydrostatic theory of liquid crystals , 1962 .

[21]  Fanghua Lin,et al.  Partial regularity of the dynamic system modeling the flow of liquid crystals , 1995 .

[22]  Fanghua Lin,et al.  Liquid Crystal Flows in Two Dimensions , 2010 .

[23]  F. Lin,et al.  On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals , 2010 .

[24]  Modelling of Nematic Liquid Crystals in Electromagnetic Fields , 2009 .

[25]  Zhifei Zhang,et al.  Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows , 2012 .

[26]  Min-Chun Hong Global existence of solutions of the simplified Ericksen–Leslie system in dimension two , 2011 .

[27]  Changyou Wang,et al.  Blow up Criterion for Nematic Liquid Crystal Flows , 2011, 1104.5683.

[28]  Changyou Wang,et al.  Compressible hydrodynamic flow of liquid crystals in 1-D , 2011 .

[29]  Gui-Qiang G. Chen,et al.  The Navier-Stokes equations with the kinematic and vorticity boundary conditions on non-flat boundaries , 2008, 0901.0144.

[30]  Changyou Wang,et al.  WEAK SOLUTION TO COMPRESSIBLE HYDRODYNAMIC FLOW OF LIQUID CRYSTALS IN DIMENSION ONE , 2010 .

[31]  G. Ponce Remarks on a paper by J. T. Beale, T. Kato, and A. Majda , 1985 .

[32]  F. Lin Nonlinear theory of defects in nematic liquid crystals; Phase transition and flow phenomena , 1989 .

[33]  F. Lin,et al.  The analysis of harmonic maps and their heat flows , 2008 .

[34]  Yoshikazu Giga,et al.  Remarks on spectra of operator rot , 1990 .

[35]  P. Gennes,et al.  The physics of liquid crystals , 1974 .

[36]  P. Lions Mathematical topics in fluid mechanics , 1996 .

[37]  Huanyao Wen,et al.  Strong solutions of the compressible nematic liquid crystal flow , 2011, 1104.5684.