The Theory of Composites: Frontmatter

[1]  Roderic S. Lakes,et al.  Cellular solid structures with unbounded thermal expansion , 1996 .

[2]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[3]  Jean Plana Mémoire sur la Théorie du Magnétisme , 1855 .

[4]  Geoffrey Ingram Taylor,et al.  The two coefficients of viscosity for an incompressible fluid containing air bubbles , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[6]  D R McKenzie,et al.  Photonic engineering. Aphrodite's iridescence. , 2001, Nature.

[7]  H. Attouch Variational convergence for functions and operators , 1984 .

[8]  D. Hale The physical properties of composite materials , 1976 .

[9]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[10]  Salvatore Torquato,et al.  On the use of homogenization theory to design optimal piezocomposites for hydrophone applications , 1997 .

[11]  S. Spagnolo,et al.  Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche , 1968 .

[12]  N. Bakhvalov,et al.  Homogenisation: Averaging Processes in Periodic Media , 1989 .

[13]  J. V. Biggers,et al.  Composites of PZT and Epoxy for Hydrostatic Transducer Applications , 1981 .

[14]  Doina Cioranescu,et al.  Homogenization of Reticulated Structures , 1999 .

[15]  Leif Persson,et al.  The homogenization method : an introduction , 1993 .

[16]  Giuseppe Buttazzo,et al.  Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations , 1989 .

[17]  Luc Tartar,et al.  Calculus of Variations and Homogenization , 1997 .

[18]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[19]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[20]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[21]  L. Mazliak,et al.  HOMOGENIZATION OF TWO RANDOMLY WEAKLY CONNECTED MATERIALS , .

[22]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[23]  Grégoire Allaire,et al.  Mathematical approaches and methods , 1996 .

[24]  S. Torquato,et al.  Design of materials with extreme thermal expansion using a three-phase topology optimization method , 1997 .

[25]  Ole Sigmund,et al.  On the design of 1–3 piezocomposites using topology optimization , 1998 .

[26]  G. Milton,et al.  Which Elasticity Tensors are Realizable , 1995 .

[27]  A. Einstein Eine neue Bestimmung der Moleküldimensionen , 1905 .

[28]  F. L. Matthews,et al.  Composite Materials : Engineering and Science , 1993 .

[29]  Michael Faraday,et al.  Experimental Researches in Electricity , 1880, Nature.

[30]  John Stachel,et al.  Einstein's Miraculous Year: Five Papers That Changed the Face of Physics , 1998 .

[31]  O. Sigmund,et al.  Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[32]  Grégoire Allaire,et al.  Multiscale convergence and reiterated homogenisation , 1996, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[33]  Robert V. Kohn,et al.  Topics in the Mathematical Modelling of Composite Materials , 1997 .

[34]  Mark J. Beran,et al.  Statistical Continuum Theories , 1968 .

[35]  C. Nan,et al.  Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. , 1994, Physical review. B, Condensed matter.

[36]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[37]  S. Torquato,et al.  Composites with extremal thermal expansion coefficients , 1996 .

[38]  Marco Avellaneda,et al.  Magnetoelectric Effect in Piezoelectric/Magnetostrictive Multilayer (2-2) Composites , 1994 .

[39]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[40]  Marco Avellaneda,et al.  Calculating the performance of 1–3 piezoelectric composites for hydrophone applications: An effective medium approach , 1998 .

[41]  J. V. Sanders,et al.  Colour of Precious Opal , 1964, Nature.

[42]  R. Lakes Materials with structural hierarchy , 1993, Nature.

[43]  G. Geymonat,et al.  QUELQUES REMARQUES SUR L'HOMOGENEISATION DES MATERIAUX ELASTIQUES NONLINEAIRES , 1990 .

[44]  G. Allaire Homogenization and two-scale convergence , 1992 .

[45]  K. Markov,et al.  Elementary Micromechanics of Heterogeneous Media , 2000 .

[46]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[47]  George Papanicolaou,et al.  Bounds for effective parameters of heterogeneous media by analytic continuation , 1983 .

[48]  G. Milton Composite materials with poisson's ratios close to — 1 , 1992 .

[49]  Stefan Müller,et al.  Homogenization of nonconvex integral functionals and cellular elastic materials , 1987 .

[50]  D. Bergman,et al.  Enhancement of thermoelectric power factor in composite thermoelectrics , 1999, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407).

[51]  W. A. Smith,et al.  Optimizing electromechanical coupling in piezocomposites using polymers with negative Poisson's ratio , 1991, IEEE 1991 Ultrasonics Symposium,.