EIGENVALUE VARIANCE BOUNDS FOR WIGNER AND COVARIANCE RANDOM MATRICES
暂无分享,去创建一个
[1] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[2] Alexander Tikhomirov,et al. On the rate of convergence to the semi-circular law , 2011, 1109.0611.
[3] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[4] C. Villani. Topics in Optimal Transportation , 2003 .
[5] N. Pillai,et al. Universality of covariance matrices , 2011, 1110.2501.
[6] A. V. D. Vaart,et al. Asymptotic Statistics: Frontmatter , 1998 .
[7] P. Forrester,et al. Interrelationships between orthogonal, unitary and symplectic matrix ensembles , 1999, solv-int/9907008.
[8] A. Guionnet,et al. An Introduction to Random Matrices , 2009 .
[9] Dudley,et al. Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .
[10] T. Tao,et al. Random matrices: Sharp concentration of eigenvalues , 2012, 1201.4789.
[11] Sean O’Rourke,et al. Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices , 2009, 0909.2677.
[12] H. Yau,et al. Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.
[13] Z. Su. Gaussian Fluctuations in Complex Sample Covariance Matrices , 2006 .
[14] M. Ledoux,et al. Small deviations for beta ensembles , 2009, 0912.5040.
[15] A. Soshnikov. Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.
[16] Y. Peres,et al. Determinantal Processes and Independence , 2005, math/0503110.
[17] T. Tao,et al. Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge , 2009, 0908.1982.
[18] Friedrich Götze,et al. The rate of convergence for spectra of GUE and LUE matrix ensembles , 2005 .
[19] A. Guionnet,et al. CONCENTRATION OF THE SPECTRAL MEASURE FOR LARGE MATRICES , 2000 .
[20] Jonas Gustavsson. Gaussian fluctuations of eigenvalues in the GUE , 2004 .
[21] Roman Vershynin,et al. Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.
[22] T. Tao,et al. Random Matrices: the Distribution of the Smallest Singular Values , 2009, 0903.0614.
[23] L. Pastur,et al. Eigenvalue Distribution of Large Random Matrices , 2011 .
[24] Increasing subsequences and the hard-to-soft edge transition in matrix ensembles , 2002, math-ph/0205007.
[25] Ke Wang. RANDOM COVARIANCE MATRICES: UNIVERSALITY OF LOCAL STATISTICS OF EIGENVALUES UP TO THE EDGE , 2011, 1104.4832.
[26] Z. D. Bai,et al. Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .
[27] T. Tao,et al. Random covariance matrices: Universality of local statistics of eigenvalues , 2009, 0912.0966.
[28] F. Götze,et al. Rate of convergence to the semicircular law for the Gaussian unitary ensemble , 2003 .
[29] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[30] S. Bobkov,et al. On Concentration of Empirical Measures and Convergence to the Semi-circle Law , 2010 .
[31] Random matrices: Universality of eigenvectors , 2011 .
[32] Friedrich Götze,et al. Rate of convergence to the semi-circular law , 2003 .
[33] M. Meckes,et al. Concentration and convergence rates for spectral measures of random matrices , 2011, 1109.5997.