The Next Generation Transit Survey (NGTS)

We describe the Next Generation Transit Survey (NGTS), which is a ground-based project searching for transiting exoplanets orbiting bright stars. NGTS builds on the legacy of previous surveys, most notably WASP, and is designed to achieve higher photometric precision and hence find smaller planets than have previously been detected from the ground. It also operates in red light, maximizing sensitivity to late K and early M dwarf stars. The survey specifications call for photometric precision of 0.1 per cent in red light over an instantaneous field of view of 100  deg2, enabling the detection of Neptune-sized exoplanets around Sun-like stars and super-Earths around M dwarfs. The survey is carried out with a purpose-built facility at Cerro Paranal, Chile, which is the premier site of the European Southern Observatory (ESO). An array of twelve 20 cm f/2.8 telescopes fitted with back-illuminated deep-depletion CCD cameras is used to survey fields intensively at intermediate Galactic latitudes. The instrument is also ideally suited to ground-based photometric follow-up of exoplanet candidates from space telescopes such as TESS, Gaia and PLATO. We present observations that combine precise autoguiding and the superb observing conditions at Paranal to provide routine photometric precision of 0.1 per cent in 1 h for stars with I-band magnitudes brighter than 13. We describe the instrument and data analysis methods as well as the status of the survey, which achieved first light in 2015 and began full-survey operations in 2016. NGTS data will be made publicly available through the ESO archive.

[1]  C. Watson,et al.  z′-BAND GROUND-BASED DETECTION OF THE SECONDARY ECLIPSE OF WASP-19b , 2012, 1206.3585.

[2]  T. Louden,et al.  SPATIALLY RESOLVED EASTWARD WINDS AND ROTATION OF HD 189733b , 2015, 1511.03689.

[3]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[4]  P. Rojo,et al.  Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars , 2016, 1603.03738.

[5]  P. Conroy,et al.  HATSouth: A Global Network of Fully Automated Identical Wide-Field Telescopes , 2012, 1206.1391.

[6]  Marc Ollivier,et al.  The CoRoT space mission : early results Special feature The CoRoT-7 planetary system : two orbiting super-Earths , 2009 .

[7]  Drake Deming,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2016, Nature.

[8]  Olivier Bienayme,et al.  THE RADIAL VELOCITY EXPERIMENT (RAVE): FIFTH DATA RELEASE , 2013, 1609.03210.

[9]  M. Holman,et al.  THE TRANSIT LIGHT CURVE PROJECT. XI. SUBMILLIMAGNITUDE PHOTOMETRY OF TWO TRANSITS OF THE BLOATED PLANET WASP-4b , 2009, 0901.4346.

[10]  Tsevi Mazeh,et al.  Correcting systematic effects in a large set of photometric light curves , 2005, astro-ph/0502056.

[11]  Howard Isaacson,et al.  ALL SIX PLANETS KNOWN TO ORBIT KEPLER-11 HAVE LOW DENSITIES , 2013, 1303.0227.

[12]  C. Alard Image subtraction using a space-varying kernel , 2000 .

[13]  et al,et al.  The CoRoT space mission : early results Special feature Transiting exoplanets from the CoRoT space mission VIII . CoRoT-7 b : the first super-Earth with measured radius , 2009 .

[14]  M. Riva,et al.  ESPRESSO: The next European exoplanet hunter , 2014, 1401.5918.

[15]  Andrew T. Young,et al.  Photometric error analysis. VI. Confirmation of Reiger's theory of scintillation , 1967 .

[16]  L. Hillenbrand,et al.  New Low-mass Eclipsing Binary Systems in Praesepe Discovered by K2 , 2017, 1706.03084.

[17]  David J Armstrong,et al.  A hot Uranus transiting the nearby M dwarf GJ 3470 - Detected with HARPS velocimetry. Captured in transit with TRAPPIST photometry , 2012, 1206.5307.

[18]  Brandon Tingley,et al.  USING STELLAR DENSITIES TO EVALUATE TRANSITING EXOPLANETARY CANDIDATES , 2011, 1101.2087.

[19]  S. Seager,et al.  Mass-Radius Relationships for Solid Exoplanets , 2007, 0707.2895.

[20]  M. R. Haas,et al.  Kepler Mission Design, Realized Photometric Performance, and Early Science , 2010, 1001.0268.

[21]  J. Jenkins,et al.  RAFT I: Discovery of new planetary candidates and updated orbits from archival FEROS spectra , 2015, 1505.04796.

[22]  J. Pepper,et al.  A Low-mass Exoplanet Candidate Detected by K2 Transiting the Praesepe M Dwarf JS 183 , 2017, 1703.10250.

[23]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[24]  Nolan R. Walborn,et al.  Stellar Spectral Classification , 2009 .

[25]  V. Ripepi,et al.  The Kepler characterization of the variability among A- and F-type stars I. General overview , 2011, 1107.0335.

[26]  Jean-Luis Lizon,et al.  Setting New Standards with HARPS , 2003 .

[27]  S. Csizmadia,et al.  A study of the performance of the transit detection tool DST in space-based surveys - Application of the CoRoT pipeline to Kepler data , 2012, 1211.6550.

[28]  R. Paul Butler,et al.  Measurement of Spin-Orbit Alignment in an Extrasolar Planetary System , 2005, astro-ph/0504555.

[29]  W. Kausch,et al.  An atmospheric radiation model for Cerro Paranal - I. The optical spectral range , 2012, 1205.2003.

[30]  Jaymie M. Matthews,et al.  A SUPER-EARTH TRANSITING A NAKED-EYE STAR , 2011, 1104.5230.

[31]  M. Mayor,et al.  An extended upper atmosphere around the extrasolar planet HD209458b , 2003, Nature.

[32]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[33]  J. Greiner,et al.  WASP-4b transit observations with GROND , 2012, 1201.5727.

[34]  R. P. Butler,et al.  A Transiting “51 Peg-like” Planet , 2000, The Astrophysical journal.

[35]  B. Enoch,et al.  The WASP Project and the SuperWASP Cameras , 2006, astro-ph/0608454.

[36]  UC Berkeley,et al.  HAT-P-11b: A SUPER-NEPTUNE PLANET TRANSITING A BRIGHT K STAR IN THE KEPLER FIELD , 2009, 0901.0282.

[37]  Nigel Bannister,et al.  Next Generation Transit Survey (NGTS) , 2013, Proceedings of the International Astronomical Union.

[38]  Austin,et al.  KEPLER'S FIRST ROCKY PLANET: KEPLER-10b , 2011, 1102.0605.

[39]  University of Warwick,et al.  DONUTS: A Science Frame Autoguiding Algorithm with Sub-Pixel Precision, Capable of Guiding on Defocused Stars , 2013, 1304.2405.

[40]  Paul V. Johnson,et al.  VizieR Online Data Catalog: H 2 , D 2 , and HD c 3 Π u; , 2017 .

[41]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[42]  M. R. Haas,et al.  A closely packed system of low-mass, low-density planets transiting Kepler-11 , 2011, Nature.

[43]  Suzanne Aigrain,et al.  ldtk: Limb Darkening Toolkit , 2015, 1508.02634.

[44]  R. G. West,et al.  Efficient identification of exoplanetary transit candidates from SuperWASP light curves , 2007, 0707.0417.

[45]  Xavier Bonfils,et al.  A rocky planet transiting a nearby low-mass star , 2015, Nature.

[46]  Warren R. Brown,et al.  Kepler-16: A Transiting Circumbinary Planet , 2011, Science.

[47]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[48]  A. Collier Cameron,et al.  A fast hybrid algorithm for exoplanetary transit searches , 2006, astro-ph/0609418.

[49]  E. Agol,et al.  THE QUASIPERIODIC AUTOMATED TRANSIT SEARCH ALGORITHM , 2012, 1210.5136.

[50]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[51]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[52]  R. P. Butler,et al.  OBLIQUITIES OF HOT JUPITER HOST STARS: EVIDENCE FOR TIDAL INTERACTIONS AND PRIMORDIAL MISALIGNMENTS , 2012, 1206.6105.

[53]  Frederick R. Chromey,et al.  THE FLAT SKY: CALIBRATION AND BACKGROUND UNIFORMITY IN WIDE FIELD ASTRONOMICAL IMAGES , 1996 .

[54]  P. Giommi,et al.  The PLATO 2.0 mission , 2013, 1310.0696.

[55]  R. G. West,et al.  Transiting hot Jupiters from WASP-South, Euler and TRAPPIST : WASP-95b to WASP-101b , 2013, 1310.5630.

[56]  Antonino Francesco Lanza,et al.  Comparative blind test of five planetary transit detection algorithms on realistic synthetic light curves , 2005 .

[57]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003 .

[58]  Xavier Bonfils,et al.  A super-Earth transiting a nearby low-mass star , 2009, Nature.

[59]  J. Eastman,et al.  MOST DETECTS TRANSITS OF HD 97658b, A WARM, LIKELY VOLATILE-RICH SUPER-EARTH , 2013 .

[60]  K. Stanek,et al.  Wide‐Field Millimagnitude Photometry with the HAT: A Tool for Extrasolar Planet Detection , 2004, astro-ph/0401219.

[61]  M. Auvergne,et al.  The CoRoT satellite in flight : description and performance , 2009, 0901.2206.

[62]  M. Tewes,et al.  The CORALIE survey for southern extrasolar planets - XVII. New and updated long period and massive planets , 2012, 1211.6444.

[63]  Aisey M Andel ANALYTIC LIGHTCURVES FOR PLANETARY TRANSIT SEARCHES , 2002 .

[64]  D. Queloz,et al.  Detection of transits of the nearby hot Neptune GJ 436 b , 2007, Astronomy & Astrophysics.

[65]  Rafael Brahm,et al.  CERES: A Set of Automated Routines for Echelle Spectra , 2016, 1609.02279.

[66]  P. Cargile,et al.  THE SOLAR NEIGHBORHOOD. XXXVII. THE MASS–LUMINOSITY RELATION FOR MAIN-SEQUENCE M DWARFS , 2016, 1608.04775.

[67]  L. Hebb,et al.  Improved parameters for the transiting hot Jupiters WASP-4b and WASP-5b , 2008, 0812.1998.

[68]  Mark R. Calabretta,et al.  Representations of world coordinates in FITS , 2002, astro-ph/0207407.

[69]  P. Magain,et al.  Temperate Earth-sized planets transiting a nearby ultracool dwarf star , 2016, Nature.

[70]  Brice-Olivier Demory,et al.  A new yield simulator for transiting planets and false positives: application to the Next Generation Transit Survey , 2016, 1611.02526.

[71]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[72]  E. Schilbach,et al.  THE PPMXL CATALOG OF POSITIONS AND PROPER MOTIONS ON THE ICRS. COMBINING USNO-B1.0 AND THE TWO MICRON ALL SKY SURVEY (2MASS) , 2010, 1003.5852.

[73]  A. Burrows,et al.  THERMAL PROCESSES GOVERNING HOT-JUPITER RADII , 2013, 1303.0293.

[74]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[75]  S. Roweis,et al.  ASTROMETRY.NET: BLIND ASTROMETRIC CALIBRATION OF ARBITRARY ASTRONOMICAL IMAGES , 2009, 0910.2233.

[76]  David J Armstrong,et al.  Transit shapes and self-organizing maps as a tool for ranking planetary candidates: application to Kepler and K2 , 2016, 1611.01968.

[77]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[78]  G. Kov'acs,et al.  A box-fitting algorithm in the search for periodic transits , 2002, astro-ph/0206099.

[79]  David J Armstrong,et al.  Transmission spectroscopy of the inflated exoplanet WASP-52b, and evidence for a bright region on the stellar surface , 2016, 1608.08993.

[80]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[81]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[82]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[83]  P. Berlind,et al.  LSPM J1112+7626: DETECTION OF A 41 DAY M-DWARF ECLIPSING BINARY FROM THE MEARTH TRANSIT SURVEY , 2011, 1109.2055.

[84]  Joseph E. Rodriguez,et al.  A temperate rocky super-Earth transiting a nearby cool star , 2017, Nature.

[85]  Lennart Lindegren,et al.  ASTROMETRIC EXOPLANET DETECTION WITH GAIA , 2014, 1411.1173.

[86]  Philipp Eigmüller,et al.  NGTS: a robotic transit survey to detect Neptune and super-Earth mass planets , 2012, Other Conferences.

[87]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[88]  Mercedes Lopez-Morales,et al.  Ground-based secondary eclipse detection of the very-hot Jupiter OGLE-TR-56b , 2009, 0901.1876.

[89]  A. Pickles A Stellar Spectral Flux Library: 1150–25000 Å , 1998 .

[90]  Xavier Bonfils,et al.  A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b , 2015, Nature.

[91]  Jie Li,et al.  Transiting circumbinary planets Kepler-34 b and Kepler-35 b , 2012, Nature.

[92]  C. S. Fernandes,et al.  Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1 , 2017, Nature.

[93]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[94]  E. Greisen,et al.  Representations of celestial coordinates in FITS , 2002, astro-ph/0207413.

[95]  V. S. Dhillon,et al.  Atmospheric scintillation in astronomical photometry , 2015, 1506.06921.

[96]  R. W. Noyes,et al.  A trend filtering algorithm for wide-field variability surveys , 2004 .

[97]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[98]  P. Tenenbaum,et al.  AUTOMATIC CLASSIFICATION OF KEPLER PLANETARY TRANSIT CANDIDATES , 2014, 1408.1496.

[99]  David J Armstrong,et al.  Centroid vetting of transiting planet candidates from the Next Generation Transit Survey , 2017, 1707.07978.

[100]  T. Guillot,et al.  Transiting exoplanets from the CoRoT space mission XXVIII. CoRoT-33b, an object in the brown dwarf desert with 2:3 commensurability with its host star , 2015, 1508.05763.

[101]  I. Baraffe,et al.  Structure and evolution of super-Earth to super-Jupiter exoplanets - I. Heavy element enrichment in the interior , 2008, 0802.1810.

[102]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[103]  Lennart Lindegren,et al.  Atmospheric Intensity Scintillation of Stars. III. Effects for Different Telescope Apertures , 1998 .

[104]  Leslie Greengard,et al.  Fast Direct Methods for Gaussian Processes , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[105]  K. Braun,et al.  HOW TO CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, AND RADIUS , 2015, 1501.01635.