Isotopic effects on the thermal conductivity of graphene nanoribbons: Localization mechanism
暂无分享,去创建一个
Baowen Li | Jin-Wu Jiang | Jian-Sheng Wang | Jin-Wu Jiang | Baowen Li | Jian-Sheng Wang | Jinghua Lan | Jinghua Lan
[1] A. Lösch. Nano , 2012, Ortsregister.
[2] S. Louie,et al. Heat capacity of carbon nanotubes , 1996 .
[3] Alexander A. Balandin,et al. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering , 2009 .
[4] Jian-Sheng Wang. Quantum thermal transport from classical molecular dynamics. , 2007, Physical review letters.
[5] Hoover,et al. Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.
[6] A. Kuwabara,et al. Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations , 2006 .
[7] Julian D. Gale,et al. GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .
[8] S. Phillpot,et al. Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .
[9] C. N. Lau,et al. PROOF COPY 020815APL Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits , 2008 .
[10] Jennifer R. Lukes,et al. Thermal Conductivity of Individual Single-Wall Carbon Nanotubes , 2007 .
[11] Taku Ohara,et al. Thermal conductivity of silicon nanowire by nonequilibrium molecular dynamics simulations , 2009 .
[12] Cristina H. Amon,et al. Assessing the applicability of quantum corrections to classical thermal conductivity predictions , 2009 .
[13] Donald W. Brenner,et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .
[14] L. A. Falkovsky. Unusual field and temperature dependence of the Hall effect in graphene , 2007 .
[15] Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature. , 2005, The Journal of chemical physics.
[16] A. A. Balandin,et al. Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite , 2009, 0904.0607.
[17] C. N. Lau,et al. Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.
[18] Baowen Li,et al. Thermal rectification in carbon nanotube intramolecular junctions: Molecular dynamics calculations , 2007, 0707.4241.
[19] Sokrates T. Pantelides,et al. Dynamical simulations of nonequilibrium processes — Heat flow and the Kapitza resistance across grain boundaries , 1997 .
[20] Shigeo Maruyama,et al. A molecular dynamics simulation of heat conduction in finite length SWNTs , 2002 .
[21] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[22] Jian-Sheng Wang,et al. Molecular dynamics with quantum heat baths: Application to nanoribbons and nanotubes , 2009, 0907.3256.
[23] Böttger,et al. Interplay of disorder and anharmonicity in heat conduction: Molecular-dynamics study. , 1994, Physical review. B, Condensed matter.
[24] A. Majumdar,et al. Isotope effect on the thermal conductivity of boron nitride nanotubes. , 2006, Physical review letters.
[25] Andrew G. Glen,et al. APPL , 2001 .
[26] J. Lü,et al. Quantum thermal transport in nanostructures , 2008, 0802.2761.
[27] S. Nosé. A unified formulation of the constant temperature molecular dynamics methods , 1984 .