Isotopic effects on the thermal conductivity of graphene nanoribbons: Localization mechanism

Thermal conductivity of graphene nanoribbons (GNR) with length 106 A and width 4.92 A after isotopic doping is investigated by molecular dynamics with quantum correction. Two interesting phenomena are found, (1) isotopic doping reduces thermal conductivity effectively in low doping region, and the reduction slows down in high doping region, (2) thermal conductivity increases with increasing temperature in both pure and doped GNR, but the increasing behavior is much more slow in the doped GNR than that in pure ones. Further studies reveal that the physics of these two phenomena is related to the localized phonon modes, whose number increases quickly (slowly) with increasing isotopic doping in low (high) isotopic doping region.

[1]  A. Lösch Nano , 2012, Ortsregister.

[2]  S. Louie,et al.  Heat capacity of carbon nanotubes , 1996 .

[3]  Alexander A. Balandin,et al.  Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering , 2009 .

[4]  Jian-Sheng Wang Quantum thermal transport from classical molecular dynamics. , 2007, Physical review letters.

[5]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[6]  A. Kuwabara,et al.  Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations , 2006 .

[7]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[8]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[9]  C. N. Lau,et al.  PROOF COPY 020815APL Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits , 2008 .

[10]  Jennifer R. Lukes,et al.  Thermal Conductivity of Individual Single-Wall Carbon Nanotubes , 2007 .

[11]  Taku Ohara,et al.  Thermal conductivity of silicon nanowire by nonequilibrium molecular dynamics simulations , 2009 .

[12]  Cristina H. Amon,et al.  Assessing the applicability of quantum corrections to classical thermal conductivity predictions , 2009 .

[13]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[14]  L. A. Falkovsky Unusual field and temperature dependence of the Hall effect in graphene , 2007 .

[15]  Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature. , 2005, The Journal of chemical physics.

[16]  A. A. Balandin,et al.  Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite , 2009, 0904.0607.

[17]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[18]  Baowen Li,et al.  Thermal rectification in carbon nanotube intramolecular junctions: Molecular dynamics calculations , 2007, 0707.4241.

[19]  Sokrates T. Pantelides,et al.  Dynamical simulations of nonequilibrium processes — Heat flow and the Kapitza resistance across grain boundaries , 1997 .

[20]  Shigeo Maruyama,et al.  A molecular dynamics simulation of heat conduction in finite length SWNTs , 2002 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  Jian-Sheng Wang,et al.  Molecular dynamics with quantum heat baths: Application to nanoribbons and nanotubes , 2009, 0907.3256.

[23]  Böttger,et al.  Interplay of disorder and anharmonicity in heat conduction: Molecular-dynamics study. , 1994, Physical review. B, Condensed matter.

[24]  A. Majumdar,et al.  Isotope effect on the thermal conductivity of boron nitride nanotubes. , 2006, Physical review letters.

[25]  Andrew G. Glen,et al.  APPL , 2001 .

[26]  J. Lü,et al.  Quantum thermal transport in nanostructures , 2008, 0802.2761.

[27]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .