Self-rectifying effect in gold nanocrystal-embedded zirconium oxide resistive memory

The ZrO2 films with Au nanocrystals embedded (ZrO2:nc-Au) are fabricated by e-beam evaporation, and the self-rectifying effect in the Au/ZrO2:nc-Au/n+ Si sandwich structure is investigated. Self-rectifying resistive switching characteristics are obtained when the resistive memory is switched to low-resistance state (LRS). It is found that the Schottky contact at the Au/ZrO2 interface limits charge injection under reverse bias, while under forward bias the current is limited by space charge, resulting in a rectification of 7×102 under ±0.5 V at LRS, which enables the resistive memory to alleviate the cross-talk effect without additional switching elements in crossbar structure arrays. This self-rectifying resistive switching is believed to occur at a localized region and explained by a proposed model.

[1]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[2]  G. Lucovsky,et al.  A novel approach for determining the effective tunneling mass of electrons in HfO 2 and other high- K alternative gate dielectrics for advanced CMOS devices , 2004 .

[3]  Hisashi Shima,et al.  Control of resistance switching voltages in rectifying Pt∕TiOx∕Pt trilayer , 2008 .

[4]  J. Ferraris,et al.  The Schottky energy barrier dependence of charge injection in organic light-emitting diodes , 1998 .

[5]  Peter Mark,et al.  Space‐Charge‐Limited Currents in Organic Crystals , 1962 .

[6]  N. Xu,et al.  Characteristics and mechanism of conduction/set process in TiN∕ZnO∕Pt resistance switching random-access memories , 2008 .

[7]  Fernanda Irrera,et al.  On the reliability of ZrO2 films for VLSI applications , 2004, Microelectron. Reliab..

[8]  G. I. Meijer,et al.  Who Wins the Nonvolatile Memory Race? , 2008, Science.

[9]  Subhasis Ghosh,et al.  Thickness dependence of space charge limited current and injection limited current in organic molecular semiconductors , 2008 .

[10]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[11]  Wei Lu,et al.  Si/a-Si core/shell nanowires as nonvolatile crossbar switches. , 2008, Nano letters.

[12]  J. A. Gardner,et al.  Oxygen Vacancies in Pure Tetragonal Zirconia Powders: Dependence on the Presence of Chlorine during Processing , 2001 .

[13]  Chun-Yen Chang,et al.  Reliability characteristics of NiSi nanocrystals embedded in oxide and nitride layers for nonvolatile memory application , 2008 .

[14]  W. Lu,et al.  CMOS compatible nanoscale nonvolatile resistance switching memory. , 2008, Nano letters.

[15]  I. Baek,et al.  High‐Current‐Density CuO x/InZnOx Thin‐Film Diodes for Cross‐Point Memory Applications , 2008 .

[16]  Paul Davids,et al.  Device model for single carrier organic diodes , 1997 .

[17]  C. Hwang,et al.  A COMPARATIVE STUDY ON THE ELECTRICAL CONDUCTION MECHANISMS OF (BA0.5SR0.5)TIO3 THIN FILMS ON PT AND IRO2 ELECTRODES , 1998 .

[18]  S. Basavaiah,et al.  Bistable switching in ZrZrO2Au junctions , 1970 .

[19]  V. Dyakonov,et al.  Trap-limited hole mobility in semiconducting poly(3-hexylthiophene) , 2004 .

[20]  Jordi Suñé,et al.  Soft breakdown fluctuation events in ultrathin SiO2 layers , 1998 .

[21]  S. H. Jeon,et al.  A Low‐Temperature‐Grown Oxide Diode as a New Switch Element for High‐Density, Nonvolatile Memories , 2007 .

[22]  Ching,et al.  Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. , 1994, Physical review. B, Condensed matter.

[23]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[24]  Cheol Seong Hwang,et al.  (In,Sn)2O3∕TiO2∕Pt Schottky-type diode switch for the TiO2 resistive switching memory array , 2008 .

[25]  S. Seo,et al.  Reproducible resistance switching in polycrystalline NiO films , 2004 .

[26]  M. Kozicki,et al.  Bipolar and Unipolar Resistive Switching in Cu-Doped $ \hbox{SiO}_{2}$ , 2007, IEEE Transactions on Electron Devices.

[27]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[28]  Byung Joon Choi,et al.  Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films , 2007 .

[29]  S. Long,et al.  Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide , 2007 .

[30]  J. Campbell Scott,et al.  Is There an Immortal Memory? , 2004, Science.

[31]  Changqing Xie,et al.  Asymmetric electrical bistable behavior of an eicosanoic acid/zirconium oxide bilayer system with rectifying effect , 2008 .

[32]  Rainer Waser,et al.  Impedance spectroscopy of TiO2 thin films showing resistive switching , 2006 .

[33]  S. Haddad,et al.  Switching characteristics of Cu2O metal-insulator-metal resistive memory , 2007 .