A methodology for probabilistic model-based prognosis

This paper deals with the prognosis of complex systems using stochastic model-based techniques. Prognosis consists in this case in computing the distribution of the Remaining Useful Life (RUL) of the system conditionally to available information. In so doing, three main challenges arise from the industrial context. First, the model should unify the two classical approaches to describing complex systems: the bottom-up and the top-down approaches. The former uses elementary interacting components whilst the latter models the system’s physical behavior by means of a set of differential equations. Second, the prognosis must integrate online information to provide a specific result for each system depending on their life events. Online information can take different forms (e.g. inspections, component faults, non detection or false alarm, noisy signal) which must all be considered. Third, the prognosis must supply ready, meaningful numerical results, the error of which must also be under control. This paper proposes a method addressing those challenges. The method is illustrated with two different examples: a simplified spring-mass system and a pneumatic valve for aeronautical application.

[1]  N. Limnios,et al.  Piecewise deterministic Markov processes applied to fatigue crack growth modelling , 2009 .

[2]  Karen Gonzalez,et al.  Numerical method for optimal stopping of piecewise deterministic Markov processes , 2009, 0903.2114.

[3]  Lin Ma,et al.  Prognostic modelling options for remaining useful life estimation by industry , 2011 .

[4]  Jay Lee,et al.  A prognostic algorithm for machine performance assessment and its application , 2004 .

[5]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[6]  Jan M. van Noortwijk,et al.  A survey of the application of gamma processes in maintenance , 2009, Reliab. Eng. Syst. Saf..

[7]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[8]  David He,et al.  Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis , 2007, Eur. J. Oper. Res..

[9]  R. Eymard,et al.  Characterization of the marginal distributions of Markovprocesses used in dynamic reliability , 2006 .

[10]  Peng Huang,et al.  Stochastic Models in Reliability , 1999, Technometrics.

[11]  R. Eymard,et al.  A finite-volume scheme for dynamic reliability models , 2006 .

[12]  C. Cocozza-Thivent,et al.  The failure rate in reliability: approximations and bounds , 1996 .

[13]  Antoine Grall,et al.  Age-based preventive maintenance for passive components submitted to stress corrosion cracking , 2011, Math. Comput. Model..

[14]  Sophie Mercier,et al.  Modeling and quantification of aging systems for maintenance optimization , 2010, 2010 Proceedings - Annual Reliability and Maintainability Symposium (RAMS).

[15]  Ariane Lorton Contribution aux approches hybrides pour le pronostic à l'aide de processus de Markov déterministes par morceaux , 2012 .

[16]  Xuefei Guan,et al.  Probabilistic fatigue damage prognosis using maximum entropy approach , 2012, J. Intell. Manuf..

[17]  M. Jacobsen Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes , 2005 .

[18]  Matthew Daigle,et al.  Model-based prognostics under limited sensing , 2010, 2010 IEEE Aerospace Conference.

[19]  Khac Tuan Huynh,et al.  Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks , 2012, Eur. J. Oper. Res..

[20]  Daming Lin,et al.  A review on machinery diagnostics and prognostics implementing condition-based maintenance , 2006 .

[21]  Jay Lee,et al.  Feature signature prediction of a boring process using neural network modeling with confidence bounds , 2006 .

[22]  Daniel J. Inman,et al.  Damage Prognosis For Aerospace, Civil and Mechanical Systems Preface , 2005 .

[23]  M. Pecht,et al.  Review of offshore wind turbine failures and fault prognostic methods , 2012, Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing).

[24]  M. Farid Golnaraghi,et al.  Prognosis of machine health condition using neuro-fuzzy systems , 2004 .

[25]  Olivier Gaudoin,et al.  Modélisation aléatoire en fiabilité des logiciels , 2007 .

[26]  Leonidas Camarinopoulos,et al.  Dynamic reliability under random shocks , 2002, Reliab. Eng. Syst. Saf..

[27]  Frank L. Lewis,et al.  Intelligent Fault Diagnosis and Prognosis for Engineering Systems , 2006 .

[28]  Noureddine Zerhouni,et al.  Recurrent radial basis function network for time-series prediction , 2003 .

[29]  Donghua Zhou,et al.  Remaining useful life estimation - A review on the statistical data driven approaches , 2011, Eur. J. Oper. Res..

[30]  Mark H. Davis Markov Models and Optimization , 1995 .

[31]  Antoine Grall,et al.  Sequential condition-based maintenance scheduling for a deteriorating system , 2003, Eur. J. Oper. Res..

[32]  Sankalita Saha,et al.  Metrics for Offline Evaluation of Prognostic Performance , 2021, International Journal of Prognostics and Health Management.

[33]  Pierre Del Moral,et al.  Feynman-Kac formulae , 2004 .