A methodology for probabilistic model-based prognosis
暂无分享,去创建一个
[1] N. Limnios,et al. Piecewise deterministic Markov processes applied to fatigue crack growth modelling , 2009 .
[2] Karen Gonzalez,et al. Numerical method for optimal stopping of piecewise deterministic Markov processes , 2009, 0903.2114.
[3] Lin Ma,et al. Prognostic modelling options for remaining useful life estimation by industry , 2011 .
[4] Jay Lee,et al. A prognostic algorithm for machine performance assessment and its application , 2004 .
[5] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[6] Jan M. van Noortwijk,et al. A survey of the application of gamma processes in maintenance , 2009, Reliab. Eng. Syst. Saf..
[7] Michèle Basseville,et al. Detection of abrupt changes: theory and application , 1993 .
[8] David He,et al. Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis , 2007, Eur. J. Oper. Res..
[9] R. Eymard,et al. Characterization of the marginal distributions of Markovprocesses used in dynamic reliability , 2006 .
[10] Peng Huang,et al. Stochastic Models in Reliability , 1999, Technometrics.
[11] R. Eymard,et al. A finite-volume scheme for dynamic reliability models , 2006 .
[12] C. Cocozza-Thivent,et al. The failure rate in reliability: approximations and bounds , 1996 .
[13] Antoine Grall,et al. Age-based preventive maintenance for passive components submitted to stress corrosion cracking , 2011, Math. Comput. Model..
[14] Sophie Mercier,et al. Modeling and quantification of aging systems for maintenance optimization , 2010, 2010 Proceedings - Annual Reliability and Maintainability Symposium (RAMS).
[15] Ariane Lorton. Contribution aux approches hybrides pour le pronostic à l'aide de processus de Markov déterministes par morceaux , 2012 .
[16] Xuefei Guan,et al. Probabilistic fatigue damage prognosis using maximum entropy approach , 2012, J. Intell. Manuf..
[17] M. Jacobsen. Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes , 2005 .
[18] Matthew Daigle,et al. Model-based prognostics under limited sensing , 2010, 2010 IEEE Aerospace Conference.
[19] Khac Tuan Huynh,et al. Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks , 2012, Eur. J. Oper. Res..
[20] Daming Lin,et al. A review on machinery diagnostics and prognostics implementing condition-based maintenance , 2006 .
[21] Jay Lee,et al. Feature signature prediction of a boring process using neural network modeling with confidence bounds , 2006 .
[22] Daniel J. Inman,et al. Damage Prognosis For Aerospace, Civil and Mechanical Systems Preface , 2005 .
[23] M. Pecht,et al. Review of offshore wind turbine failures and fault prognostic methods , 2012, Proceedings of the IEEE 2012 Prognostics and System Health Management Conference (PHM-2012 Beijing).
[24] M. Farid Golnaraghi,et al. Prognosis of machine health condition using neuro-fuzzy systems , 2004 .
[25] Olivier Gaudoin,et al. Modélisation aléatoire en fiabilité des logiciels , 2007 .
[26] Leonidas Camarinopoulos,et al. Dynamic reliability under random shocks , 2002, Reliab. Eng. Syst. Saf..
[27] Frank L. Lewis,et al. Intelligent Fault Diagnosis and Prognosis for Engineering Systems , 2006 .
[28] Noureddine Zerhouni,et al. Recurrent radial basis function network for time-series prediction , 2003 .
[29] Donghua Zhou,et al. Remaining useful life estimation - A review on the statistical data driven approaches , 2011, Eur. J. Oper. Res..
[30] Mark H. Davis. Markov Models and Optimization , 1995 .
[31] Antoine Grall,et al. Sequential condition-based maintenance scheduling for a deteriorating system , 2003, Eur. J. Oper. Res..
[32] Sankalita Saha,et al. Metrics for Offline Evaluation of Prognostic Performance , 2021, International Journal of Prognostics and Health Management.
[33] Pierre Del Moral,et al. Feynman-Kac formulae , 2004 .