Computational framework for digital input shapers using linear optimisation

Numerous types of input shapers have been developed to reduce motion-induced vibration. Many of the shapers are designed using non-linear optimisation methods that can be challenging to implement and do not guarantee a global minimum solution. This paper unifies the solution of different types of input shapers into a single computational framework based on linear optimisation techniques. Two methods for computing a variety of digital input shapers are presented. The first method is a multi-level optimisation that enables both primary and secondary performance measures to be simultaneously optimised. The second method is a computationally efficient technique for computing very robust shapers.

[1]  Warren P. Seering,et al.  Preshaping Command Inputs to Reduce System Vibration , 1990 .

[2]  Aurelio Piazzi,et al.  Optimal dynamic-inversion-based control of an overhead crane , 2002 .

[3]  Masayoshi Tomizuka,et al.  Zero Phase Error Tracking Algorithm for Digital Control , 1987 .

[4]  Hariharan Krishnan,et al.  Tip-trajectory tracking control of single-link flexible robots by output re-definition , 2000 .

[5]  Dong-Soo Kwon,et al.  Tracking Control of a Nonminimum-Phase Flexible Manipulator , 1991 .

[6]  Masayoshi Tomizuka,et al.  Feedforward Tracking Controller Design Based on the Identification of Low Frequency Dynamics , 1993 .

[7]  H. Tokumaru,et al.  Inverse Dynamics of Flexible Robot Arms: Modeling and Computation for Trajectory Control , 1990 .

[8]  Warren P. Seering,et al.  Design and comparison of command shaping methods for controlling residual vibration , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[9]  William Singhose,et al.  Vibration Reduction Using Multi-Hump Input Shapers , 1997 .

[10]  William Singhose,et al.  Command Generation for Reducing Perceived Lag in Flexible Telerobotic Arms , 2000 .

[11]  D. P. Magee,et al.  Optimal arbitrary time-delay filtering to minimize vibration in elastic manipulator systems , 1996 .

[12]  U.-H. Park,et al.  DESIGN AND SENSITIVITY ANALYSIS OF AN INPUT SHAPING FILTER IN THE Z -PLANE , 2001 .

[13]  O. Smith Posicast Control of Damped Oscillatory Systems , 1957 .

[14]  Masayoshi Tomizuka,et al.  The Effect of Adding Zeroes to Feedforward Controllers , 1991 .

[15]  Otto J. M. Smith,et al.  Feedback control systems , 1958 .

[16]  William Singhose,et al.  Reference Command Shaping Using Specified-Negative-Amplitude Input Shapers for Vibration Reduction , 2004 .

[17]  Warren P. Seering,et al.  INPUT SHAPING FOR VIBRATION REDUCTION WITH SPECIFIED INSENSITIVITY TO MODELING ERRORS , 1996 .

[18]  E. Bayo,et al.  Cancelling vibrations in flexible articulated structures using non-causal inverse dynamics , 2000 .

[19]  Neil C. Singer,et al.  Residual Vibration Reduction in Computer controlled Machines , 1989 .

[20]  Warren P. Seering,et al.  Residual Vibration Reduction Using Vector Diagrams to Generate Shaped Inputs , 1994 .

[21]  G. Tallman,et al.  Analog study of dead-beat posicast control , 1958 .

[22]  Warren P. Seering,et al.  Using input command pre-shaping to suppress multiple mode vibration , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[23]  Ichiro Watanabe,et al.  Digital shaping filters for reducing machine vibration , 1992, IEEE Trans. Robotics Autom..