Abstract representations for interactive visualization of virtual 3D city models

Virtual 3D city models increasingly cover whole city areas; hence, the perception of complex urban structures becomes increasingly difficult. Using abstract visualization, complexity of these models can be hidden where its visibility is unnecessary, while important features are maintained and highlighted for better comprehension and communication. We present a technique to automatically generalize a given virtual 3D city model consisting of building models, an infrastructure network and optional land coverage data; this technique creates several representations of increasing levels of abstraction. Using the infrastructure network, our technique groups building models and replaces them with cell blocks, while preserving local landmarks. By computing a landmark hierarchy, we reduce the set of initial landmarks in a spatially balanced manner for use in higher levels of abstraction. In four application examples, we demonstrate smooth visualization of transitions between precomputed representations; dynamic landmark highlighting according to virtual camera distance; an implementation of a cognitively enhanced route representation, and generalization lenses to combine precomputed representations in focus + context visualization.

[1]  Stephen C. Hirtle,et al.  The Nature of Landmarks for Real and Electronic Spaces , 1999, COSIT.

[2]  Tomas Akenine-Möller,et al.  Real-time rendering, 2nd Edition , 2002 .

[3]  Monika Sester GENERALIZATION BASED ON LEAST SQUARES ADJUSTMENT , 2000 .

[4]  Martin Galanda,et al.  Adaptive Zooming in Web Cartography , 2002, Comput. Graph. Forum.

[5]  Dinesh Manocha,et al.  Model Simplification , 2005, The Visualization Handbook.

[6]  Louis Vuurpijl,et al.  Using Pen-Based Outlines for Object-Based Annotation and Image-Based Queries , 1999, VISUAL.

[7]  Rachel Ward,et al.  Shape deformation in continuous map generalization , 2009, GeoInformatica.

[8]  Karl-Heinrich Anders LEVEL OF DETAIL GENERATION OF 3D BUILDING GROUPS BY AGGREGATION AND TYPIFICATION , 2005 .

[9]  Norman G. Vinson,et al.  Design guidelines for landmarks to support navigation in virtual environments , 1999, CHI '99.

[10]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[11]  Jürgen Döllner,et al.  Techniques for Generalizing Building Geometry of Complex Virtual 3D City Models , 2008 .

[12]  Kevin Lynch,et al.  The Image of the City , 1960 .

[13]  Matthias Trapp,et al.  3D Generalization Lenses for Interactive Focus + Context Visualization of Virtual City Models , 2008, 2008 12th International Conference Information Visualisation.

[14]  Tomas Akenine-Möller,et al.  Real-time rendering , 1997 .

[15]  Kai-Florian Richter,et al.  Wayfinding Choreme Maps , 2005, VISUAL.

[16]  J. Döllner,et al.  TECHNIQUES FOR THE INTERACTIVE EXPLORATION OF HIGH-DETAIL 3D BUILDING RECONSTRUCTIONS USING THE EXAMPLE OF ROMAN COLOGNE , 2008 .

[17]  Renato Pajarola,et al.  Survey of semi-regular multiresolution models for interactive terrain rendering , 2007, The Visual Computer.

[18]  Hugues Hoppe Smooth view-dependent level-of-detail control and its application to terrain rendering , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[19]  Jiann-Yeou Rau,et al.  LOD Generation for 3D Polyhedral Building Model , 2006, PSIVT.

[20]  Hayden Landis,et al.  Production-Ready Global Illumination , 2004 .

[21]  Matthias Trapp,et al.  Real-Time Volumetric Tests Using Layered Depth Images , 2008, Eurographics.

[22]  Jürgen Döllner Non-Photorealistic 3D Geovisualization , 2007 .

[23]  William Ribarsky,et al.  Legible Cities: Focus-Dependent Multi-Resolution Visualization of Urban Relationships , 2007, IEEE Transactions on Visualization and Computer Graphics.

[24]  Hartmut Asche,et al.  Geospatial Modelling of Urban Security: A Novel Approach with Virtual 3D City Models , 2008, ICCSA.

[25]  Maneesh Agrawala,et al.  Automatic generation of tourist maps , 2008, ACM Trans. Graph..

[26]  Robert Weibel,et al.  Integrating multi agent, object oriented and algorithmic techniques for improved automoated map generalisation , 2001 .

[27]  Alexander Wolff,et al.  Morphing polylines: A step towards continuous generalization , 2008, Comput. Environ. Urban Syst..

[28]  Monika Sester Continuous Generalization for fast and smooth Visualization on small Displays , 2004 .

[29]  W. Mackaness,et al.  The application of agents in automated map generalization , 1999 .

[30]  Charles Hansen,et al.  The Visualization Handbook , 2011 .

[31]  Stephan Winter,et al.  Spatial Information Theory, 8th International Conference, COSIT 2007, Melbourne, Australia, September 19-23, 2007, Proceedings , 2007, COSIT.

[32]  Stephan Winter,et al.  Enriching Wayfinding Instructions with Local Landmarks , 2002, GIScience.

[33]  D. Wood How Maps Work , 1992 .

[34]  Liqiu Meng,et al.  Map-Based Mobile Services , 2008 .

[35]  Kai-Florian Richter,et al.  The Cognitive Reality of Schematic Maps , 2005 .

[36]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[37]  Andrea Forberg,et al.  Generalization of 3D building data based on a scale-space approach , 2007 .

[38]  Volker Paelke,et al.  1 User-centred design of landmark visualizations , 2008 .

[39]  Matthias Trapp,et al.  3D Wayfinding Choremes: A Cognitively Motivated Representation of Route Junctions in Virtual Environments , 2009, AGILE Conf..

[40]  Cliff B. Jones,et al.  An Iterative Displacement Method for Conflict Resolution in Map Generalization , 2001, Algorithmica.

[41]  Luis Rueda,et al.  Advances in Image and Video Technology, Second Pacific Rim Symposium, PSIVT 2007, Santiago, Chile, December 17-19, 2007, Proceedings , 2007, PSIVT.

[42]  Martin Tomko,et al.  Landmark Hierarchies in Context , 2008 .

[43]  Martin Kada,et al.  Scale-Dependent Simplification of 3D Building Models Based on Cell Decomposition and Primitive Instancing , 2007, COSIT.

[44]  Cathy Moulder How Maps Work , 2009 .

[45]  Tony DeRose,et al.  Toolglass and magic lenses: the see-through interface , 1993, SIGGRAPH.

[46]  Robert B McMaster,et al.  Generalization in Digital Cartography , 2008 .