ThemeRiver: Visualizing Thematic Changes in Large Document Collections

The ThemeRiver visualization depicts thematic variations over time within a large collection of documents. The thematic changes are shown in the context of a time-line and corresponding external events. The focus on temporal thematic change within a context framework allows a user to discern patterns that suggest relationships or trends. For example, the sudden change of thematic strength following an external event may indicate a causal relationship. Such patterns are not readily accessible in other visualizations of the data. We use a river metaphor to convey several key notions. The document collection's time-line, selected thematic content and thematic strength are indicated by the river's directed flow, composition and changing width, respectively. The directed flow from left to right is interpreted as movement through time and the horizontal distance between two points on the river defines a time interval. At any point in time, the vertical distance, or width, of the river indicates the collective strength of the selected themes. Colored "currents" flowing within the river represent individual themes. A current's vertical width narrows or broadens to indicate decreases or increases in the strength of the individual theme.

[1]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[2]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[3]  G. Lakoff,et al.  Metaphors We Live by , 1981 .

[4]  B. Marx The Visual Display of Quantitative Information , 1985 .

[5]  Edward R. Tufte,et al.  The Visual Display of Quantitative Information , 1986 .

[6]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[7]  Gerald M. Karam,et al.  Visualization using timelines , 1994, ISSTA '94.

[8]  Ben Shneiderman,et al.  Visual information seeking: tight coupling of dynamic query filters with starfield displays , 1994, CHI '94.

[9]  Ben Shneiderman,et al.  Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays , 1994 .

[10]  James J. Thomas,et al.  Visualizing the non-visual: spatial analysis and interaction with information from text documents , 1995, Proceedings of Visualization 1995 Conference.

[11]  Edward A. Fox,et al.  Visualizing search results: some alternatives to query-document similarity , 1996, SIGIR '96.

[12]  Ben Shneiderman,et al.  LifeLines: visualizing personal histories , 1996, CHI.

[13]  Edward R. Tufte Visual explanations: images and quantities, evidence and narrative , 1997 .

[14]  Elizabeth D. Mynatt,et al.  Timewarp: techniques for autonomous collaboration , 1997, CHI.

[15]  Matthew Chalmers,et al.  Domesticating Bead: adapting an information visualization system to a financial institution , 1997, Proceedings of VIZ '97: Visualization Conference, Information Visualization Symposium and Parallel Rendering Symposium.

[16]  D. Ellis Visual explanations: Images and quantities , 1997 .

[17]  Xia Lin Map displays for information retrieval , 1997 .

[18]  Wendy E. Mackay,et al.  DIVA: exploratory data analysis with multimedia streams , 1998, CHI.

[19]  John Karat,et al.  Visualizing medical records with LifeLines , 1998, CHI Conference Summary.

[20]  Paul Whitney,et al.  Multi-faceted insight through interoperable visual information analysis paradigms , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[21]  Donald D. Hoffman,et al.  Visual Intelligence: How We Create What We See , 1998 .

[22]  Vijay Kumar,et al.  Visualization of relationships , 1999, HYPERTEXT '99.

[23]  George Wolberg,et al.  Monotonic cubic spline interpolation , 1999, 1999 Proceedings Computer Graphics International.

[24]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .