New constructions of quasi-cyclic LDPC codes based on special classes of BIDBs for the AWGN and binary erasure channels

This paper presents new methods for efficiently constructing encodable quasi-cyclic low-density parity-check (LDPC) codes based on special balanced incomplete block designs (BIBDs). Codes constructed perform well over both the additive white Gaussian noise (AWGN) and binary erasure channels with iterative decoding.

[1]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[2]  E. Netto Zur Theorie der Tripelsysteme , 1893 .

[3]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[4]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[5]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[6]  Shu Lin,et al.  Codes on finite geometries , 2005, IEEE Transactions on Information Theory.

[7]  R. C. Bose ON THE CONSTRUCTION OF BALANCED INCOMPLETE BLOCK DESIGNS , 1939 .

[8]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[9]  Marc P. C. Fossorier,et al.  Quasi-Cyclic Low-Density Parity-Check Codes From Circulant Permutation Matrices , 2004, IEEE Trans. Inf. Theory.

[10]  A. Orlitsky,et al.  Stopping sets and the girth of Tanner graphs , 2002, Proceedings IEEE International Symposium on Information Theory,.

[11]  Shu Lin,et al.  Low-density parity-check codes based on finite geometries: A rediscovery and new results , 2001, IEEE Trans. Inf. Theory.

[12]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[13]  Sarah J. Johnson,et al.  Regular low-density parity-check codes from combinatorial designs , 2001, Proceedings 2001 IEEE Information Theory Workshop (Cat. No.01EX494).

[14]  R. M. Tanner Spectral graphs for quasi-cyclic LDPC codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[15]  Shu Lin,et al.  A class of low-density parity-check codes constructed based on Reed-Solomon codes with two information symbols , 2003, IEEE Communications Letters.

[16]  Bane V. Vasic,et al.  Combinatorial constructions of low-density parity-check codes for iterative decoding , 2002, IEEE Transactions on Information Theory.

[17]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[18]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[19]  Khaled A. S. Abdel-Ghaffar,et al.  On algebraic construction of Gallager and circulant low-density parity-check codes , 2004, IEEE Transactions on Information Theory.

[20]  Jie Xu,et al.  Construction of quasicyclic LDPC codes based on the minimum weight codewords of Reed-Solomon codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[21]  Zongwang Li,et al.  Efficient encoding of quasi-cyclic low-density parity-check codes , 2006, IEEE Trans. Commun..

[22]  Thomas J. Richardson,et al.  Error Floors of LDPC Codes , 2003 .

[23]  Shu Lin,et al.  Near-Shannon-limit quasi-cyclic low-density parity-check codes , 2004, IEEE Trans. Commun..

[24]  Marc P. C. Fossorier Quasi-Cyclic Low Density Parity Check Codes , 2003 .

[25]  Khaled A. S. Abdel-Ghaffar,et al.  A trellis-based method for removing cycles from bipartite graphs and construction of low density parity check codes , 2004, IEEE Communications Letters.

[26]  Bahram Honary,et al.  Construction of low-density parity-check codes based on balanced incomplete block designs , 2004, IEEE Transactions on Information Theory.

[27]  Marco Buratti,et al.  Constructions of (q, k, 1) difference families with q a prime power and k = 4, 5 , 1995, Discret. Math..