'Shortest path' ray tracing for most general 2D/3D anisotropic media

This paper presents a simple method for seismic ray tracing in a general anisotropic medium, which may include complex structures and compound materials, such as water, isotropic and anisotropic rocks, fine-layers and parallel small cracked blocks. The anisotropy may be defined by up to 21 density-normalized elastic moduli which vary with spatial position. The method presented is a direct extension of the irregular network 'shortest path' method for an isotropic solid. For this extension, we first apply analytic solutions of the wave velocities (phase velocity and group velocity) for a general anisotropic medium as a 'transform' or 'mapping' operator to convert the elastic-moduli-described medium into the direction-dependent group-velocity models for the three independent wave modes (qP, qS1, qS2). We then utilize the 'shortest path' method to trace raypaths through such group-velocity models for the three modes. We also give an alternative derivation of Fermat's principle of stationary time in anisotropic media. With this method, the travel times and ray paths of the first arrivals emanating from a source to multiple receivers can be simultaneously obtained for the three modes. Some 2D/3D numerical experiments are performed to show the accuracy and applicability of the method. From these results, one can see that the method may be applied to kinematic modelling and inversion in 2D and 3D seismic or seismological applications.

[1]  Tariq Alkhalifah Traveltime computation with the linearized eikonal equation for anisotropic media , 2002 .

[2]  Paul L. Stoffa,et al.  TRAVELTIME COMPUTATION IN TRANSVERSELY ISOTROPIC MEDIA , 1994 .

[3]  R. G. Pratt,et al.  Traveltime tomography in anisotropic media—I. Theory , 1992 .

[4]  P. Rasolofosaon,et al.  Elastic-wave velocities in anisotropic media of arbitrary symmetry-generalization of Thomsen's parameters ε, δ and γ , 1997 .

[5]  J. Carcione Constitutive model and wave equations for linear, viscoelastic, anisotropic media , 1995 .

[6]  David C. Booth,et al.  The anisotropic reflectivity technique: theory , 1983 .

[7]  W. Symes,et al.  Finite‐difference quasi‐P traveltimes for anisotropic media , 2001 .

[8]  Traveltime computation by perturbation with FD-eikonal solvers in isotropic and weakly anisotropic media , 1998 .

[9]  Kaoru Yamaguchi,et al.  A NUMERICAL EXPERIMENT ON NONLINEAR IMAGE RECONSTRUCTION FROM FIRST-ARRIVAL TIMES FOR TWO-DIMENSIONAL ISLAND ARC STRUCTURE , 1986 .

[10]  Yanghua Wang,et al.  TOMOGRAPHIC INVERSION OF REFLECTION SEISMIC AMPLITUDE DATA FOR VELOCITY VARIATION , 1995 .

[11]  L. Frazer,et al.  Seismic waves in stratified anisotropic media. II: Elastodynamic eigensolutions for some anisotropic systems , 1987 .

[12]  S. Greenhalgh,et al.  On the computation of elastic wave group velocities for a general anisotropic medium , 2004 .

[13]  Chao-ying Bai Three dimensional seismic kinematic inversion with application to reconstruction of the velocity structure of Rabaul volcano / by Chao-ying Bai. , 2004 .

[14]  James G. Berryman,et al.  Long-wave elastic anisotropy in transversely isotropic media , 1979 .

[15]  K. Helbig Foundations of Anisotropy for Exploration Seismics , 1994 .

[16]  P. Shearer,et al.  Ray tracing in azimuthally anisotropic media—I. Results for models of aligned cracks in the upper crust , 1989 .

[17]  V. Červený Seismic Rays and Ray Intensities in Inhomogeneous Anisotropic Media , 1972 .

[18]  Stuart Crampin,et al.  A review of wave motion in anisotropic and cracked elastic-media , 1981 .

[19]  L. Neil Frazer,et al.  Seismic waves in stratified anisotropic media , 1984 .

[20]  P. Stoffa,et al.  Finite‐difference modeling in transversely isotropic media , 1994 .

[21]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[22]  R. G. Pratt,et al.  Traveltime tomography in anisotropic media—II. Application , 1992 .

[23]  Ettore Cardarelli,et al.  Ray tracing in elliptical anisotropic media using the linear traveltime interpolation (LTI) method applied to traveltime seismic tomography , 2002 .

[24]  Zhongjie Zhang,et al.  Minimum travel time tree algorithm for seismic ray tracing: improvement in efficiency , 2004 .

[25]  M. Kvasnička,et al.  3-D network ray tracing , 1994 .

[26]  M. Schoenberg,et al.  REFLECTION OF ELASTIC WAVES FROM PERIODICALLY STRATIFIED MEDIA WITH INTERFACIAL SLIP , 1983 .

[27]  V. Červený,et al.  Numerical modelling and inversion of travel times of seismic body waves in inhomogeneous anisotropic media , 1984 .

[28]  J. Kendall,et al.  Modelling waveforms in anisotropic inhomogeneous media using ray and Maslov asymptotic theory: applications to exploration seismology , 1993 .

[29]  Stuart Crampin Effective anisotropic elastic constants for wave propagation through cracked solids , 1984 .

[30]  L. Thomsen Weak elastic anisotropy , 1986 .

[31]  T. Alkhalifah,et al.  Migration error in transversely isotropic media , 1994 .

[32]  R. G. Pratt,et al.  Travel time tomography in anisotropic media , 1990 .

[33]  T. Moser Shortest path calculation of seismic rays , 1991 .

[34]  Elastic wave propagation in heterogeneous anisotropic media using the lumped finite‐element method , 2002 .

[35]  M. Musgrave,et al.  Crystal Acoustics: Introduction to the Study of Elastic Waves and Vibrations in Crystals , 1970 .

[36]  F. Hron,et al.  Reflection and transmission coefficients for transversely isotropic media , 1977, Bulletin of the Seismological Society of America.

[37]  Klaus Helbig,et al.  SYSTEMATIC CLASSIFICATION OF LAYER‐INDUCED TRANSVERSE ISOTROPY* , 1981 .

[38]  D. Komatitsch,et al.  Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .

[39]  P. Shearer,et al.  Ray tracing in anisotropic media with a linear gradient , 1988 .

[40]  V. Vavryčuk Ray tracing in anisotropic media with singularities , 2001 .

[41]  Dirk Gajewski,et al.  Computation of high-frequency seismic wavefields in 3-D laterally inhomogeneous anisotropic media , 1987 .