Mechanizing Dependency Pairs

The dependency pair approach [2, 13, 14] is a powerful technique for automated termination and innermost termination proofs of term rewrite systems (TRSs). For any TRS, it generates inequality constraints that have to be satisfied by well-founded orders. We improve the dependency pair approach by considerably reducing the number of constraints produced for (innermost) termination proofs. Moreover, we extend transformation techniques to manipulate dependency pairs which simplify (innermost) termination proofs significantly. In order to fully mechanize the approach, we show how transformations and the search for suitable orders can be mechanized efficiently. We implemented our results in the automated termination prover AProVE and evaluated them on large collections of examples.

[1]  Nachum Dershowitz,et al.  Orderings for term-rewriting systems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[2]  Nachum Dershowitz Orderings for Term-Rewriting Systems , 1979, FOCS.

[3]  Gérard P. Huet,et al.  Proofs by induction in equational theories with constructors , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[4]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[5]  Yoshihito Toyama,et al.  Counterexamples to Termination for the Direct Sum of Term Rewriting Systems , 1987, Inf. Process. Lett..

[6]  Joachim Steinbach,et al.  Automatic Termination Proofs With Transformation Orderings , 1995, RTA.

[7]  J. Urgen Giesl Generating Polynomial Orderings for Termination Proofs ? , 1995 .

[8]  Bernhard Gramlich,et al.  Abstract Relations between Restricted Termination and Confluence Properties of Rewrite Systems , 1995, Fundam. Informaticae.

[9]  Manfred A. Jeusfeld,et al.  Decision Support Components on the Internet 1 , 1995 .

[10]  Bernhard Gramlich On Proving Termination by Innermost Termination , 1996, RTA.

[11]  M. Papazoglou,et al.  Information Brokering: Design, Search and Transformation , 1996 .

[12]  Martin Staudt,et al.  VAREX: An Environment for Validating and Refining Rule Bases , 1996, IEA/AIE.

[13]  Bernhard Gramlich,et al.  Termination and confluence: properties of structured rewrite systems , 1996 .

[14]  Matthias Jarke,et al.  Cooperative Information Systems: A Manifesto * , 1997 .

[15]  Markus Mohnen,et al.  Optimising the memory management of higher order functional programs , 1997 .

[16]  Reidar Conradi,et al.  Version models for software configuration management , 1998, CSUR.

[17]  R. Studer,et al.  Survey on the Scenario Use in Twelve Selected Industrial Projects , 1998 .

[18]  Andy Schürr,et al.  Computing with Graphs and Graph Rewriting , 1999 .

[19]  Yoshihito Toyama,et al.  Argument Filtering Transformation , 1999, PPDP.

[20]  Matthias Jarke,et al.  Exploring the Semantic Structure of Technical Document Collections: A Cooperative Systems Approach , 2000, CoopIS.

[21]  Chang Liu,et al.  Term rewriting and all that , 2000, SOEN.

[22]  Thomas Arts System Description: The Dependency Pair Method , 2000, RTA.

[23]  Albert Rubio,et al.  Complete Monotonic Semantic Path Orderings , 2000, CADE.

[24]  Enno Ohlebusch,et al.  TALP: A Tool for the Termination Analysis of Logic Programs , 2000, RTA.

[25]  Jürgen Giesl,et al.  Termination of term rewriting using dependency pairs , 2000, Theor. Comput. Sci..

[26]  Nachum Dershowitz,et al.  A General Framework for Automatic Termination Analysis of Logic Programs , 2000, Applicable Algebra in Engineering, Communication and Computing.

[27]  Xavier Urbain,et al.  Automated Incremental Termination Proofs for Hierarchically Defined Term Rewriting Systems , 2001, IJCAR.

[28]  Neil D. Jones,et al.  The size-change principle for program termination , 2001, POPL '01.

[29]  Jürgen Giesl,et al.  Verification of Erlang Processes by Dependency Pairs , 2001, Applicable Algebra in Engineering, Communication and Computing.

[30]  Aart Middeldorp,et al.  Approximating Dependency Graphs Using Tree Automata Techniques , 2001, IJCAR.

[31]  Enno Ohlebusch,et al.  Hierarchical termination revisited , 2002, Inf. Process. Lett..

[32]  Hélène Kirchner,et al.  System Presentation -- CARIBOO: An induction based proof tool for termination with strategies , 2002, PPDP '02.

[33]  Enno Ohlebusch,et al.  Modular Termination Proofs for Rewriting Using Dependency Pairs , 2002, J. Symb. Comput..

[34]  Aart Middeldorp,et al.  Approximations for Strategies and Termination , 2002, WRS.

[35]  Nao Hirokawa,et al.  Approximating Dependency Graphs without using Tree Automata Techniques , 2003 .

[36]  Jürgen Giesl,et al.  Size-Change Termination for Term Rewriting , 2003, RTA.

[37]  Jürgen Giesl,et al.  Improving Dependency Pairs , 2003, LPAR.

[38]  Nao Hirokawa,et al.  Tsukuba Termination Tool , 2003, RTA.

[39]  Nao Hirokawa,et al.  Automating the Dependency Pair Method , 2005, CADE.

[40]  Michael Hanus,et al.  Specialization of functional logic programs based on needed narrowing , 2004, Theory and Practice of Logic Programming.

[41]  N. A C H U M D E R S H O W I T Z Termination of Rewriting' , 2022 .