Changeable wettability of electrospun membrane by adjusting self‐assembly micelles structure of amphiphilic block copolymer

[1]  Jinghua Yin,et al.  Construction of anti-thrombotic and anti-oxidative surfaces with elastomer/Pluronic F127 assembled microfibers , 2018, Applied Surface Science.

[2]  R. Li,et al.  A super-hydrophobic and electrically conductive nanofibrous membrane for a chemical vapor sensor , 2018 .

[3]  F. Fiori,et al.  A comparison of high throughput core–shell 2D electrospinning and 3D centrifugal spinning techniques to produce platelet lyophilisate-loaded fibrous scaffolds and their effects on skin cells , 2017 .

[4]  Jiyi Xia,et al.  Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering. , 2017, Materials science & engineering. C, Materials for biological applications.

[5]  Larissa M. Shepherd,et al.  Increasing Stability of Biotin Functionalized Electrospun Fibers for Biosensor Applications. , 2017, ACS applied materials & interfaces.

[6]  Zheng‐Hong Luo,et al.  Electrospun Fibrous Mat with pH-Switchable Superwettability That Can Separate Layered Oil/Water Mixtures. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[7]  Yongjin Li,et al.  Programmable Structure Control in Cigarlike TiO2 Nanofibers and UV-Light Photocatalysis Performance of Resultant Fabrics , 2016 .

[8]  Yu Zhu,et al.  Hierarchical Electrospun and Cooperatively Assembled Nanoporous Ni/NiO/MnOx/Carbon Nanofiber Composites for Lithium Ion Battery Anodes. , 2016, ACS applied materials & interfaces.

[9]  Zheng‐Hong Luo,et al.  Electrospun fibrous membrane with enhanced swithchable oil/water wettability for oily water separation , 2016 .

[10]  Larissa M. Shepherd,et al.  Surface Functional Poly(lactic Acid) Electrospun Nanofibers for Biosensor Applications , 2016, Materials.

[11]  Zheng‐Hong Luo,et al.  Smart Fiber Membrane for pH-Induced Oil/Water Separation. , 2015, ACS applied materials & interfaces.

[12]  S. Lanceros‐Méndez,et al.  Electrospun styrene-butadiene-styrene elastomer copolymers for tissue engineering applications: Effect of butadiene/styrene ratio, block structure, hydrogenation and carbon nanotube loading on physical properties and cytotoxicity , 2014 .

[13]  Liping Zhao,et al.  Novel cigarlike TiO2 nanofibers: fabrication, improved mechanical, and electrochemical performances. , 2013, ACS applied materials & interfaces.

[14]  Yiyong Mai,et al.  Self-assembly of block copolymers. , 2012, Chemical Society reviews.

[15]  O. Borisov,et al.  Theory of Block Polymer Micelles: Recent Advances and Current Challenges , 2012 .

[16]  C. Jérôme,et al.  Electrospinning of a functional perfluorinated block copolymer as a powerful route for imparting superhydrophobicity and corrosion resistance to aluminum substrates. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[17]  Xuejun Zheng,et al.  Improved NH3, C2H5OH, and CH3COCH3 sensing properties of SnO2 nanofibers by adding block copolymer P123 , 2009 .

[18]  Xing‐dong Zhang,et al.  Synthesis and protein adsorption of hierarchical nanoporous ultrathin fibers. , 2009, The journal of physical chemistry. B.

[19]  Marc A. Hillmyer,et al.  Polydispersity and block copolymer self-assembly , 2008 .

[20]  C. McCormick,et al.  Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: stimuli-responsive drug and gene delivery. , 2008, Advanced drug delivery reviews.

[21]  Kwangsok Kim,et al.  Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[22]  D. Richter,et al.  AMPHIPHILIC BLOCK COPOLYMERS AS EFFICIENCY BOOSTERS FOR MICROEMULSIONS , 1999 .

[23]  G. Fredrickson,et al.  Block Copolymers—Designer Soft Materials , 1999 .

[24]  G. Ertl,et al.  Catalysis and Surface Science , 1999 .