Backward Monte-Carlo applied to muon transport

Abstract We discuss a backward Monte-Carlo technique for muon transport problem, with emphasis on its application in muography. Backward Monte-Carlo allows exclusive sampling of a final state by reversing the simulation flow. In practice it can be made analogous to an adjoint Monte-Carlo, though it is more versatile for muon transport. A backward Monte-Carlo was implemented as a dedicated library: PUMAS, providing a detailed muon transport engine down to a few MeV. It is shown for case studies relevant for muography imaging that the implemented forward and backward Monte-Carlo schemes agree to better than 1%. Within these schemes, the achieved accuracy is similar to the one obtained using a detailed Monte Carlo engine (Geant4) but with a significant speedup, at least two orders of magnitude in backward mode.

[1]  T. Gaisser Cosmic rays and particle physics , 2016 .

[2]  A. Tarasov,et al.  Coulomb corrections to the parameters of the Molière multiple scattering theory , 2013, 1312.7809.

[3]  E. Busato,et al.  Inner structure of the Puy de Dôme volcano: cross-comparison of geophysical models (ERT, gravimetry, muon imaging) , 2012 .

[4]  José M. Fernández-Varea,et al.  On the theory and simulation of multiple elastic scattering of electrons , 1993 .

[5]  J. Baró,et al.  An algorithm for Monte Carlo simulation of coupled electron-photon transport , 1997 .

[6]  G. Santin,et al.  Implementation of the reverse/adjoint Monte Carlo method into Geant4 , 2010 .

[7]  Aleksander Jablonski,et al.  ELSEPA - Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules , 2005, Comput. Phys. Commun..

[8]  Nolwenn Lesparre,et al.  Density muon radiography of La Soufrière of Guadeloupe volcano: comparison with geological, electrical resistivity and gravity data , 2012 .

[9]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[10]  R. Kokoulin,et al.  Bremsstrahlung from muons scattered by atomic electrons , 1997 .

[11]  P. Bogdanovich,et al.  Atomic Data and Nuclear Data Tables , 2013 .

[12]  J A Anderson,et al.  Search for hidden chambers in the pyramids. , 1970, Science.

[13]  Y. X. Wang,et al.  Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms , 2018 .

[14]  M. Iwasaki,et al.  Method of probing inner-structure of geophysical substance with the horizontal cosmic-ray muons and possible application to volcanic eruption prediction , 1995 .

[15]  F. Garufi,et al.  Joint measurement of the atmospheric muon flux through the Puy de Dôme volcano with plastic scintillators and Resistive Plate Chambers detectors , 2015 .

[16]  Ryuichi Nishiyama,et al.  Monte Carlo simulation for background study of geophysical inspection with cosmic-ray muons , 2016 .

[17]  A. Menchaca-Rocha Using cosmic muons to search for cavities in the Pyramid of the Sun, Teotihuacan: preliminary results , 2014 .

[18]  Hiroshi Shinohara,et al.  Radiographic visualization of magma dynamics in an erupting volcano , 2014, Nature Communications.

[19]  D. Groom,et al.  MUON STOPPING POWER AND RANGE TABLES 10 MeV–100 TeV , 2001 .

[20]  D. Seckel,et al.  Propagation of muons and taus at high energies , 2000, hep-ph/0012350.

[21]  J. Deasy ICRU Report 49, Stopping Powers and Ranges for Protons and Alph Particles , 1994 .

[22]  G. Marsaglia,et al.  The Ziggurat Method for Generating Random Variables , 2000 .

[23]  S. Kelner Pair production in collisions between muons and atomic electrons , 1998 .

[24]  F. Salvat A generic algorithm for Monte Carlo simulation of proton transport , 2013 .

[25]  J. Baró,et al.  PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter , 1995 .