Flaming Ignition of Solid Fuels

This chapter will describe how heating of a solid fuel leads to flaming ignition. The discussion will be centred on flaming ignition of solid fuels but will not address smouldering or spontaneous ignition since these subjects will be covered in Chaps. 19 and 20 respectively. Thus, the presence of a source of heat decoupled from the solid and fuel gasification will be assumed throughout the chapter.

[1]  P. Beaulieu,et al.  Flammability characteristics at applied heat flux levels up to 200 kW/m2 , 2008 .

[2]  Mamoru Takahashi,et al.  Gas-phase ignition of a solid fuel in a hot stagnation-point flow , 1981 .

[3]  Arvind Atreya,et al.  Ignition of fires , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  A. C. Fernandez-Pello,et al.  On Fire Ignition , 2011 .

[5]  Dougal Drysdale,et al.  An experimental evaluation of critical surface temperature as a criterion for piloted ignition of solid fuels , 1988 .

[6]  Jose L. Torero,et al.  Understanding materials flammability , 2006 .

[7]  G. Rein,et al.  Experimental study of radiative heat transfer in a translucent fuel sample exposed to different spectral sources , 2013 .

[8]  Craig L. Beyler,et al.  A Unified Model of Fire Suppression by , 1992 .

[9]  Takashi Kashiwagi,et al.  Global kinetic constants for thermal oxidative degradation of a cellulosic paper , 1992 .

[10]  C. Lautenberger,et al.  Pyrolysis Modeling, Thermal Decomposition, AndTransport Processes In Combustible Solids , 2008 .

[11]  Michael A. Delichatsios,et al.  Determination of the convective heat transfer coefficient in three-dimensional inverse heat conduction problems , 2009 .

[12]  Dougal Drysdale,et al.  Critical heat and mass transfer at pilot ignition and extinction of a material , 1986 .

[13]  Richard E. Lyon,et al.  The effect of variation in polymer properties on the rate of burning , 2009 .

[14]  M. J. Frankel Thermal‐explosion theory in an external field , 1979 .

[15]  A. Fernandez-Pello,et al.  Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion , 2006 .

[16]  A. Bejan,et al.  Convection in Porous Media , 1992 .

[17]  N. Bal Uncertainty and complexity in pyrolysis modelling , 2012 .

[18]  Frederick W. Mowrer An analysis of effective thermal properties of thermally thick materials , 2005 .

[19]  C. Fernandez-Pello,et al.  Generalized pyrolysis model for combustible solids , 2007 .

[20]  V. Aggarwal,et al.  In the Solid Phase , 2004 .

[21]  John E. J. Staggs,et al.  Convection heat transfer in the cone calorimeter , 2009 .

[22]  James G. Quintiere,et al.  Fundamentals of Fire Phenomena: Quintiere/Fundamentals of Fire Phenomena , 2006 .

[23]  G. Zaikov,et al.  Recent Advances in Flame Retardancy of Polymeric Materials (Materials, Applications, Industry Developments, Markets) , 1994, Engineering Plastics.

[24]  J. Torero,et al.  Estimation of a total mass transfer number from the standoff distance of a spreading flame , 2002 .

[25]  Jose L. Torero,et al.  Scaling-Up fire , 2013 .

[26]  Craig L. Beyler Ignition Handbook , 2004 .

[27]  Jose L. Torero,et al.  Comparison of Pyrolysis Behavior Results between the Cone Calorimeter and the Fire Propagation Apparatus Heat Sources , 2011 .

[28]  T. Richard Hull,et al.  Sources of variability in fire test data: A case study on poly(aryl ether ether ketone) (PEEK) , 2012 .

[29]  Jose L. Torero,et al.  Mechanisms Controlling the Degradation of Poly(methyl methacrylate) Prior to Piloted Ignition , 2002 .

[30]  D. Urban,et al.  Mass flux at ignition in reduced pressure environments , 2011 .

[31]  A. Fernandez-Pello,et al.  Oxidizer Flow Effects on the Flammability of Solid Combustibles , 2001 .

[32]  A. C. Fernandez-Pello,et al.  Optimization Algorithms for Material Pyrolysis Property Estimation , 2011 .

[33]  C. Chao,et al.  Comparison of the Thermal Decomposition Behavior of a Non-Fire Retarded and a Fire Retarded Flexible Polyurethane Foam with Phosphorus and Brominated Additives , 2001 .

[34]  Forman A. Williams,et al.  A review of flame extinction , 1981 .

[35]  J. Quintiere A simplified theory for generalizing results from a radiant panel rate of flame spread apparatus , 1981 .

[36]  Takashi Kashiwagi,et al.  Polymer combustion and flammability—Role of the condensed phase∘ , 1994 .

[37]  Behdad Moghtaderi,et al.  The state‐of‐the‐art in pyrolysis modelling of lignocellulosic solid fuels , 2006 .

[38]  T. Ohlemiller Modeling of smoldering combustion propagation , 1985 .

[39]  A. F. Roberts,et al.  A Limiting condition for the burning of flammable liquids , 1973 .

[40]  Thomas Steinhaus Evaluation of the Thermophysical Properties of Poly(MethylMethacrylate): A Reference Material for the Development of a flammability Test for Micro-Gravity Environments , 1999 .

[41]  O. Ezekoye,et al.  Population-based models of thermoplastic degradation: Using optimization to determine model parameters , 2009 .

[42]  G. Rein,et al.  Numerical investigation of the ignition delay time of a translucent solid at high radiant heat fluxes , 2011 .

[43]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[44]  Kevin B. McGrattan,et al.  Fire Dynamics Simulator (Version 5): User's Guide , 2007 .

[45]  M. Delichatsios,et al.  Critical Mass Pyrolysis Rates For Extinction Of Fires Over Solid Materials , 1997 .

[46]  J. R. Hallman Ignition characteristics of plastics and rubber , 1971 .

[47]  D. Drysdale An Introduction to Fire Dynamics , 2011 .

[48]  James G. Quintiere,et al.  Fundamentals of Fire Phenomena , 2006 .

[49]  J. Staggs A reappraisal of convection heat transfer in the cone calorimeter , 2011 .

[50]  James G. Quintiere,et al.  A theory for flame extinction based on flame temperature , 2004 .

[51]  Colomba Di Blasi,et al.  Modeling and simulation of combustion processes of charring and non-charring solid fuels , 1993 .

[52]  Jan Vierendeels,et al.  An enthalpy-based pyrolysis model for charring and non-charring materials in case of fire , 2010 .

[53]  J. Quintiere Principles of Fire Behavior , 1997 .

[54]  John L. de Ris,et al.  A sample holder for determining material properties , 2000 .

[55]  Indrek S. Wichman,et al.  Theory of opposed-flow flame spread , 1992 .

[56]  Carlos Fernandez-Pello,et al.  The combined effect of pressure and oxygen concentration on piloted ignition of a solid combustible , 2010 .

[57]  C. F. Cullis,et al.  The combustion of organic polymers , 1981 .

[58]  A. C. Fernandez-Pello,et al.  The Role of Decomposition Kinetics in Pyrolysis Modeling - Application to a Fire Retardant Polyester Composite , 2008 .

[59]  T. Y. Toong,et al.  Textile Fabric Flammability , 1976 .

[60]  C. Blasi The state of the art of transport models for charring solid degradation , 2000 .

[61]  Guillermo Rein,et al.  The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data , 2006 .

[62]  M. Chaos,et al.  Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests , 2011 .

[63]  Takashi Kashiwagi,et al.  Thermal and oxidative degradation of poly(methyl methacrylate): weight loss , 1985 .

[64]  R. Lyon,et al.  A Simple Method for Determining Kinetic Parameters for Materials in Fire Models , 2011 .

[65]  S. Stoliarov,et al.  Prediction of the burning rates of non-charring polymers , 2009 .

[66]  J. Ris,et al.  Absorption of thermal energy in PMMA by in-depth radiation , 2009 .