A survey of clones on infinite sets
暂无分享,去创建一个
[1] Robert W. Quackenbush. A survey of minimal clones , 1995 .
[2] Y. Moschovakis. Descriptive Set Theory , 1980 .
[3] Large intervals in the clone lattice , 2002, math/0208066.
[4] Analytic clones , 2004, math/0404214.
[5] A Survey of Clones Closed Under Conjugation , 2004 .
[6] Precomplete classes of operations on an uncountable set , 1985 .
[7] Ágnes Szendrei,et al. Clones in universal algebra , 1986 .
[8] Wacław Sierpiński,et al. Sur les fonctions de plusieurs variables , 1945 .
[9] S. Katsman,et al. COMMUTATIVE SEMIGROUPS WHOSE LATTICE OF SUBSEMIGROUPS SATISFIES A NONTRIVIAL IDENTITY , 1990 .
[10] L. Heindorf. The maximal clones on countable sets that include all permutations , 2002 .
[11] The Clone Space as a Metric Space , 1998 .
[12] Emil L. Post. The two-valued iterative systems of mathematical logic , 1942 .
[13] Identities in the lattices of closed classes , 1993 .
[15] Ivo G. Rosenberg,et al. Locally Maximal Clones II , 2000, J. Autom. Lang. Comb..
[16] Some maximal closed classes of operations on infinite sets , 1974 .
[17] Conditions satisfied by clone lattices , 2001 .
[18] Ivo G. Rosenberg,et al. Locally Maximal Clones , 1982, J. Inf. Process. Cybern..
[19] A. Kechris. Classical descriptive set theory , 1987 .
[21] R. P. Dilworth,et al. Algebraic theory of lattices , 1973 .
[22] Ivo G. Rosenberg,et al. A classification of universal algebras by infinitary relations , 1971 .
[23] GÁBOR CZÉDLI,et al. A CLASS OF CLONES ON COUNTABLE SETS ARISING FROM IDEALS , 2001 .
[24] I. Rosenberg. MINIMAL CLONES I: THE FIVE TYPES , 1986 .
[25] D. Lau,et al. Function Algebras on Finite Sets: Basic Course on Many-Valued Logic and Clone Theory (Springer Monographs in Mathematics) , 2006 .
[26] L. A. Kaluzhnin,et al. Galois theory for post algebras. I , 1969 .
[27] I. G. Rosenberg,et al. Local completeness I , 1984 .
[28] Clones containing all almost unary functions , 2004, math/0401102.
[29] M. Pinsker. Precomplete Clones on Infinite Sets which are Closed under Conjugation , 2004, math/0409217.
[30] B. A. Romov. Galois correspondence between iterative post algebras and relations on an infinite set , 1977 .
[31] Reinhard Pöschel,et al. Funktionen- und Relationenalgebren , 1979 .
[32] W. Wistar Comfort,et al. The Theory of Ultrafilters , 1974 .
[33] Michael Pinsker. Monoidal intervals of clones on infinite sets , 2008, Discret. Math..
[34] Finite sublattices in the lattice of clones , 1994 .
[35] D. Lau,et al. Function algebras on finite sets : a basic course on many-valued logic and clone theory , 2006 .
[36] M. Pinsker. Maximal clones on uncountable sets that include all permutations , 2004, math/0401103.
[37] B. Csákány. Minimal clones—a minicourse , 2005 .
[38] M. Pinsker. THE NUMBER OF UNARY CLONES CONTAINING THE PERMUTATIONS ON AN INFINITE SET , 2004, math/0410406.
[39] The Minimal Clones above the Permutations , 2005, math/0512367.
[40] J. Whitfield. All creatures great and small , 2001, Nature.
[41] L. A. Kaluzhnin,et al. Galois theory for Post algebras. II , 1969 .
[42] Saharon Shelah,et al. Clones on regular cardinals , 2000 .
[43] Michael Pinsker. Algebraic lattices are complete sublattices of the clone lattice over an infinite set , 2006 .
[44] F. R. Drake,et al. COMBINATORIAL SET THEORY: PARTITION RELATIONS FOR CARDINALS (Studies in Logic and the Foundations of Mathematics, 106) , 1986 .
[45] Jerzy Słupecki,et al. A criterion of fullness of many-valued systems of propositional logic , 1972 .