Regularity and convergence analysis in Sobolev and Hölder spaces for generalized Whittle–Matérn fields

We analyze several Galerkin approximations of a Gaussian random field $\mathcal{Z}\colon\mathcal{D}\times\Omega\to\mathbb{R}$ indexed by a Euclidean domain $\mathcal{D}\subset\mathbb{R}^d$ whose covariance structure is determined by a negative fractional power $L^{-2\beta}$ of a second-order elliptic differential operator $L:= -\nabla\cdot(A\nabla) + \kappa^2$. Under minimal assumptions on the domain $\mathcal{D}$, the coefficients $A\colon\mathcal{D}\to\mathbb{R}^{d\times d}$, $\kappa\colon\mathcal{D}\to\mathbb{R}$, and the fractional exponent $\beta>0$, we prove convergence in $L_q(\Omega; H^\sigma(\mathcal{D}))$ and in $L_q(\Omega; C^\delta(\overline{\mathcal{D}}))$ at (essentially) optimal rates for (i) spectral Galerkin methods and (ii) finite element approximations. Specifically, our analysis is solely based on $H^{1+\alpha}(\mathcal{D})$-regularity of the differential operator $L$, where $0<\alpha\leq 1$. For this setting, we furthermore provide rigorous estimates for the error in the covariance function of these approximations in $L_{\infty}(\mathcal{D}\times\mathcal{D})$ and in the mixed Sobolev space $H^{\sigma,\sigma}(\mathcal{D}\times\mathcal{D})$, showing convergence which is more than twice as fast compared to the corresponding $L_q(\Omega; H^\sigma(\mathcal{D}))$-rate. For the well-known example of such Gaussian random fields, the original Whittle-Mat\'ern class, where $L=-\Delta + \kappa^2$ and $\kappa \equiv \operatorname{const.}$, we perform several numerical experiments which validate our theoretical results.

[1]  Elisabeth Ullmann,et al.  Fast sampling of parameterised Gaussian random fields , 2018, Computer Methods in Applied Mechanics and Engineering.

[2]  Nicholas J. Higham,et al.  Computing AAlpha, log(A), and Related Matrix Functions by Contour Integrals , 2008, SIAM J. Numer. Anal..

[3]  E. Davies,et al.  Spectral Theory and Differential Operators: Index , 1995 .

[4]  八木 厚志 Abstract parabolic evolution equations and their applications , 2010 .

[5]  L. Evans,et al.  Partial Differential Equations , 1941 .

[6]  E. Ouhabaz Analysis of Heat Equations on Domains. (LMS-31) , 2009 .

[7]  Thorsten Gerber,et al.  Semigroups Of Linear Operators And Applications To Partial Differential Equations , 2016 .

[8]  M. Griebel,et al.  Singular value decomposition versus sparse grids: refined complexity estimates , 2018, IMA Journal of Numerical Analysis.

[9]  M. Hutzenthaler,et al.  Local Lipschitz continuity in the initial value and strong completeness for nonlinear stochastic differential equations , 2013, 1309.5595.

[10]  Stephan R. Sain,et al.  A spatial analysis of multivariate output from regional climate models , 2011, 1104.2703.

[11]  Karl J. Friston,et al.  Bayesian fMRI time series analysis with spatial priors , 2005, NeuroImage.

[12]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[13]  F. Lindgren,et al.  Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping , 2011, 1104.3436.

[14]  Ingo Steinwart,et al.  On the Existence of Continuous Modifications of Vector-Valued Random Fields , 2003 .

[15]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[16]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[17]  Joseph E. Pasciak,et al.  On the stability of the L2 projection in H1(Omega) , 2002, Math. Comput..

[18]  H. Rue,et al.  Spatio-temporal modeling of particulate matter concentration through the SPDE approach , 2012, AStA Advances in Statistical Analysis.

[19]  V. Thomée,et al.  The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .

[20]  Jean-Luc Guermond,et al.  The LBB condition in fractional Sobolev spaces and applications , 2009 .

[21]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[22]  Ingo Steinwart,et al.  Mercer’s Theorem on General Domains: On the Interaction between Measures, Kernels, and RKHSs , 2012 .

[23]  E. Ouhabaz Analysis of Heat Equations on Domains , 2004 .

[24]  Frances Y. Kuo,et al.  Analysis of Circulant Embedding Methods for Sampling Stationary Random Fields , 2017, SIAM J. Numer. Anal..

[25]  J. Douglas,et al.  Optimal _{∞} error estimates for Galerkin approximations to solutions of two-point boundary value problems , 1975 .

[26]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[27]  M. Talagrand,et al.  Probability in Banach spaces , 1991 .

[28]  Panayot S. Vassilevski,et al.  A Multilevel, Hierarchical Sampling Technique for Spatially Correlated Random Fields , 2017, SIAM J. Sci. Comput..

[29]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[30]  Andrew T. A. Wood,et al.  Algorithm AS 312: An Algorithm for Simulating Stationary Gaussian Random Fields , 1997 .

[31]  J. Douglas,et al.  Optimal Lœ Error Estimates for Galerkin Approximations to Solutions of Two-Point Boundary Value Problems , 2010 .

[32]  P. Grisvard,et al.  Caractérisation de quelques espaces d'interpolation , 1967 .

[33]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[34]  Joseph E. Pasciak,et al.  Numerical approximation of fractional powers of elliptic operators , 2013, Math. Comput..

[35]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[36]  Jie Chen,et al.  Linear-Cost Covariance Functions for Gaussian Random Fields , 2017, Journal of the American Statistical Association.

[37]  David Bolin,et al.  Weak convergence of Galerkin approximations for fractional elliptic stochastic PDEs with spatial white noise , 2017, BIT Numerical Mathematics.

[38]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[39]  Frances Y. Kuo,et al.  Fast random field generation with H-matrices , 2017, Numerische Mathematik.

[40]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[41]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[42]  Helmut Harbrecht,et al.  Efficient approximation of random fields for numerical applications , 2015, Numer. Linear Algebra Appl..

[43]  Christoph Schwab,et al.  Multilevel approximation of Gaussian random fields: Fast simulation , 2019 .

[44]  Michael Griebel,et al.  Approximation of bi-variate functions: singular value decomposition versus sparse grids , 2014 .

[45]  F. Lindgren,et al.  Exploring a New Class of Non-stationary Spatial Gaussian Random Fields with Varying Local Anisotropy , 2013, 1304.6949.

[46]  David Bolin,et al.  Numerical solution of fractional elliptic stochastic PDEs with spatial white noise , 2017, IMA Journal of Numerical Analysis.

[47]  N. Higham,et al.  Computing A, log(A) and Related Matrix Functions by Contour Integrals , 2007 .

[48]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..