Fast human detection using selective block-based HOG-LBP

We propose a speed up method for the Histograms of Oriented Gradients - Local Binary Pattern (HOG-LBP) based pedestrian detector. Our method is based on the two-stage cascade structure. In the first stage evaluation, instead of extracting the features from all the region inside the detection window like in the conventional method, we extract the features from the regions which best characterize the pedestrian only. By reducing the features to be evaluated, each candidate is evaluated faster. To determine which regions are best for characterizing the pedestrian, we train the AdaBoost classifier to select the blocks whose Support Vector Machine responses of the pedestrian samples are most different from the non-pedestrians. In the second stage, we simply use the conventional HOG-LBP classifier to reevaluate the candidates which pass the first stage evaluation. Experimental results show that the detection algorithm is about three times faster than the conventional HOG-LBP SVM algorithm.

[1]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[2]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[3]  Shuicheng Yan,et al.  An HOG-LBP human detector with partial occlusion handling , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[4]  Wei Zhang,et al.  Real-time Accurate Object Detection using Multiple Resolutions , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[5]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[6]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.